| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // <tuple> |
| 10 | |
| 11 | // template <class... Types> class tuple; |
| 12 | |
| 13 | // template<class... TTypes, class... UTypes> |
| 14 | // auto |
| 15 | // operator<=>(const tuple<TTypes...>& t, const tuple<UTypes...>& u); |
| 16 | |
| 17 | // UNSUPPORTED: c++03, c++11, c++14, c++17 |
| 18 | |
| 19 | #include "test_macros.h" |
| 20 | |
| 21 | TEST_CLANG_DIAGNOSTIC_IGNORED("-Wsign-compare" ) |
| 22 | TEST_GCC_DIAGNOSTIC_IGNORED("-Wsign-compare" ) |
| 23 | TEST_MSVC_DIAGNOSTIC_IGNORED(4242 4244) |
| 24 | |
| 25 | #include <cassert> |
| 26 | #include <compare> |
| 27 | #include <limits> |
| 28 | #include <tuple> |
| 29 | #include <type_traits> // std::is_constant_evaluated |
| 30 | |
| 31 | // A custom three-way result type |
| 32 | struct CustomEquality { |
| 33 | friend constexpr bool operator==(const CustomEquality&, int) noexcept { return true; } |
| 34 | friend constexpr bool operator<(const CustomEquality&, int) noexcept { return false; } |
| 35 | friend constexpr bool operator<(int, const CustomEquality&) noexcept { return false; } |
| 36 | }; |
| 37 | |
| 38 | constexpr bool test() { |
| 39 | // Empty tuple |
| 40 | { |
| 41 | typedef std::tuple<> T0; |
| 42 | // No member types yields strong ordering (all are equal). |
| 43 | ASSERT_SAME_TYPE(decltype(T0() <=> T0()), std::strong_ordering); |
| 44 | assert((T0() <=> T0()) == std::strong_ordering::equal); |
| 45 | } |
| 46 | // Mixed types with integers, which compare strongly ordered |
| 47 | { |
| 48 | typedef std::tuple<long> T1; |
| 49 | typedef std::tuple<short> T2; |
| 50 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering); |
| 51 | assert((T1(1) <=> T2(1)) == std::strong_ordering::equal); |
| 52 | assert((T1(1) <=> T2(0)) == std::strong_ordering::greater); |
| 53 | assert((T1(1) <=> T2(2)) == std::strong_ordering::less); |
| 54 | } |
| 55 | { |
| 56 | typedef std::tuple<long, unsigned int> T1; |
| 57 | typedef std::tuple<short, unsigned long> T2; |
| 58 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering); |
| 59 | assert((T1(1, 2) <=> T2(1, 2)) == std::strong_ordering::equal); |
| 60 | assert((T1(1, 2) <=> T2(0, 2)) == std::strong_ordering::greater); |
| 61 | assert((T1(1, 2) <=> T2(2, 2)) == std::strong_ordering::less); |
| 62 | assert((T1(1, 2) <=> T2(1, 1)) == std::strong_ordering::greater); |
| 63 | assert((T1(1, 2) <=> T2(1, 3)) == std::strong_ordering::less); |
| 64 | } |
| 65 | { |
| 66 | typedef std::tuple<long, int, unsigned short> T1; |
| 67 | typedef std::tuple<short, long, unsigned int> T2; |
| 68 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering); |
| 69 | assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::strong_ordering::equal); |
| 70 | assert((T1(1, 2, 3) <=> T2(0, 2, 3)) == std::strong_ordering::greater); |
| 71 | assert((T1(1, 2, 3) <=> T2(2, 2, 3)) == std::strong_ordering::less); |
| 72 | assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::strong_ordering::greater); |
| 73 | assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::strong_ordering::less); |
| 74 | assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::strong_ordering::greater); |
| 75 | assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::strong_ordering::less); |
| 76 | } |
| 77 | // Mixed types with floating point, which compare partially ordered |
| 78 | { |
| 79 | typedef std::tuple<long> T1; |
| 80 | typedef std::tuple<double> T2; |
| 81 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 82 | assert((T1(1) <=> T2(1)) == std::partial_ordering::equivalent); |
| 83 | assert((T1(1) <=> T2(0.9)) == std::partial_ordering::greater); |
| 84 | assert((T1(1) <=> T2(1.1)) == std::partial_ordering::less); |
| 85 | } |
| 86 | { |
| 87 | typedef std::tuple<long, float> T1; |
| 88 | typedef std::tuple<double, unsigned int> T2; |
| 89 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 90 | assert((T1(1, 2) <=> T2(1, 2)) == std::partial_ordering::equivalent); |
| 91 | assert((T1(1, 2) <=> T2(0.9, 2)) == std::partial_ordering::greater); |
| 92 | assert((T1(1, 2) <=> T2(1.1, 2)) == std::partial_ordering::less); |
| 93 | assert((T1(1, 2) <=> T2(1, 1)) == std::partial_ordering::greater); |
| 94 | assert((T1(1, 2) <=> T2(1, 3)) == std::partial_ordering::less); |
| 95 | } |
| 96 | { |
| 97 | typedef std::tuple<short, float, double> T1; |
| 98 | typedef std::tuple<double, long, unsigned int> T2; |
| 99 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 100 | assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::equivalent); |
| 101 | assert((T1(1, 2, 3) <=> T2(0.9, 2, 3)) == std::partial_ordering::greater); |
| 102 | assert((T1(1, 2, 3) <=> T2(1.1, 2, 3)) == std::partial_ordering::less); |
| 103 | assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::partial_ordering::greater); |
| 104 | assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::partial_ordering::less); |
| 105 | assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::partial_ordering::greater); |
| 106 | assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::partial_ordering::less); |
| 107 | } |
| 108 | { |
| 109 | typedef std::tuple<float> T1; |
| 110 | typedef std::tuple<double> T2; |
| 111 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 112 | // Comparisons with NaN and non-NaN are non-constexpr in GCC, so both sides must be NaN |
| 113 | assert((T1(nan) <=> T2(nan)) == std::partial_ordering::unordered); |
| 114 | } |
| 115 | { |
| 116 | typedef std::tuple<double, double> T1; |
| 117 | typedef std::tuple<float, float> T2; |
| 118 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 119 | assert((T1(nan, 2) <=> T2(nan, 2)) == std::partial_ordering::unordered); |
| 120 | assert((T1(1, nan) <=> T2(1, nan)) == std::partial_ordering::unordered); |
| 121 | } |
| 122 | { |
| 123 | typedef std::tuple<double, float, float> T1; |
| 124 | typedef std::tuple<double, double, float> T2; |
| 125 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 126 | assert((T1(nan, 2, 3) <=> T2(nan, 2, 3)) == std::partial_ordering::unordered); |
| 127 | assert((T1(1, nan, 3) <=> T2(1, nan, 3)) == std::partial_ordering::unordered); |
| 128 | assert((T1(1, 2, nan) <=> T2(1, 2, nan)) == std::partial_ordering::unordered); |
| 129 | } |
| 130 | // Ordering classes and synthesized three way comparison |
| 131 | { |
| 132 | typedef std::tuple<long, int, unsigned int> T1; |
| 133 | typedef std::tuple<int, long, unsigned short> T2; |
| 134 | // All strongly ordered members yields strong ordering. |
| 135 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering); |
| 136 | } |
| 137 | { |
| 138 | struct WeakSpaceship { |
| 139 | constexpr bool operator==(const WeakSpaceship&) const { return true; } |
| 140 | constexpr std::weak_ordering operator<=>(const WeakSpaceship&) const { return std::weak_ordering::equivalent; } |
| 141 | }; |
| 142 | { |
| 143 | typedef std::tuple<int, unsigned int, WeakSpaceship> T1; |
| 144 | typedef std::tuple<int, unsigned long, WeakSpaceship> T2; |
| 145 | // Strongly ordered members and a weakly ordered member yields weak ordering. |
| 146 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering); |
| 147 | } |
| 148 | { |
| 149 | typedef std::tuple<unsigned int, int, WeakSpaceship> T1; |
| 150 | typedef std::tuple<double, long, WeakSpaceship> T2; |
| 151 | // Doubles are partially ordered, so one partial, one strong, and one weak ordering |
| 152 | // yields partial ordering. |
| 153 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 154 | } |
| 155 | } |
| 156 | { |
| 157 | struct NoSpaceship { |
| 158 | constexpr bool operator==(const NoSpaceship&) const { return true; } |
| 159 | constexpr bool operator<(const NoSpaceship&) const { return false; } |
| 160 | }; |
| 161 | typedef std::tuple<int, unsigned int, NoSpaceship> T1; |
| 162 | typedef std::tuple<int, unsigned long, NoSpaceship> T2; |
| 163 | // Strongly ordered members and a weakly ordered member (synthesized) yields weak ordering. |
| 164 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering); |
| 165 | } |
| 166 | { |
| 167 | struct SpaceshipNoEquals { |
| 168 | constexpr std::strong_ordering operator<=>(const SpaceshipNoEquals&) const { return std::strong_ordering::equal; } |
| 169 | constexpr bool operator<(const SpaceshipNoEquals&) const { return false; } |
| 170 | }; |
| 171 | typedef std::tuple<int, unsigned int, SpaceshipNoEquals> T1; |
| 172 | typedef std::tuple<int, unsigned long, SpaceshipNoEquals> T2; |
| 173 | // Spaceship operator with no == operator falls back on the < operator and weak ordering. |
| 174 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering); |
| 175 | } |
| 176 | { |
| 177 | struct CustomSpaceship { |
| 178 | constexpr CustomEquality operator<=>(const CustomSpaceship&) const { return CustomEquality(); } |
| 179 | }; |
| 180 | typedef std::tuple<int, unsigned int, CustomSpaceship> T1; |
| 181 | typedef std::tuple<short, unsigned long, CustomSpaceship> T2; |
| 182 | typedef std::tuple<CustomSpaceship> T3; |
| 183 | // Custom three way return types cannot be used in synthesized three way comparison, |
| 184 | // but they can be used for (rewritten) operator< when synthesizing a weak ordering. |
| 185 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering); |
| 186 | ASSERT_SAME_TYPE(decltype(T3() <=> T3()), std::weak_ordering); |
| 187 | } |
| 188 | { |
| 189 | typedef std::tuple<long, int> T1; |
| 190 | typedef std::tuple<long, unsigned int> T2; |
| 191 | // Even with the warning suppressed (-Wno-sign-compare) there should still be no <=> operator |
| 192 | // between signed and unsigned types, so we should end up with a synthesized weak ordering. |
| 193 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering); |
| 194 | } |
| 195 | |
| 196 | #ifdef TEST_COMPILER_GCC |
| 197 | // GCC cannot evaluate NaN @ non-NaN constexpr, so test that runtime-only. |
| 198 | if (!std::is_constant_evaluated()) |
| 199 | #endif |
| 200 | { |
| 201 | { |
| 202 | typedef std::tuple<double> T1; |
| 203 | typedef std::tuple<int> T2; |
| 204 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 205 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 206 | assert((T1(nan) <=> T2(1)) == std::partial_ordering::unordered); |
| 207 | } |
| 208 | { |
| 209 | typedef std::tuple<double, double> T1; |
| 210 | typedef std::tuple<int, int> T2; |
| 211 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 212 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 213 | assert((T1(nan, 2) <=> T2(1, 2)) == std::partial_ordering::unordered); |
| 214 | assert((T1(1, nan) <=> T2(1, 2)) == std::partial_ordering::unordered); |
| 215 | } |
| 216 | { |
| 217 | typedef std::tuple<double, double, double> T1; |
| 218 | typedef std::tuple<int, int, int> T2; |
| 219 | constexpr double nan = std::numeric_limits<double>::quiet_NaN(); |
| 220 | ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering); |
| 221 | assert((T1(nan, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered); |
| 222 | assert((T1(1, nan, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered); |
| 223 | assert((T1(1, 2, nan) <=> T2(1, 2, 3)) == std::partial_ordering::unordered); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | return true; |
| 228 | } |
| 229 | |
| 230 | int main(int, char**) { |
| 231 | test(); |
| 232 | static_assert(test()); |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |