| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // <memory> |
| 10 | |
| 11 | // unique_ptr |
| 12 | |
| 13 | //============================================================================= |
| 14 | // TESTING std::unique_ptr::unique_ptr(pointer) |
| 15 | // |
| 16 | // Concerns: |
| 17 | // 1 The pointer constructor works for any default constructible deleter types. |
| 18 | // 2 The pointer constructor accepts pointers to derived types. |
| 19 | // 2 The stored type 'T' is allowed to be incomplete. |
| 20 | // |
| 21 | // Plan |
| 22 | // 1 Construct unique_ptr<T, D>'s with a pointer to 'T' and various deleter |
| 23 | // types (C-1) |
| 24 | // 2 Construct unique_ptr<T, D>'s with a pointer to 'D' and various deleter |
| 25 | // types where 'D' is derived from 'T'. (C-1,2) |
| 26 | // 3 Construct a unique_ptr<T, D> with a pointer to 'T' and various deleter |
| 27 | // types where 'T' is an incomplete type (C-1,3) |
| 28 | |
| 29 | // Test unique_ptr(pointer) ctor |
| 30 | |
| 31 | #include <memory> |
| 32 | #include <cassert> |
| 33 | |
| 34 | #include "test_macros.h" |
| 35 | #include "unique_ptr_test_helper.h" |
| 36 | |
| 37 | // unique_ptr(pointer) ctor should only require default Deleter ctor |
| 38 | |
| 39 | template <bool IsArray> |
| 40 | TEST_CONSTEXPR_CXX23 void test_pointer() { |
| 41 | typedef typename std::conditional<!IsArray, A, A[]>::type ValueT; |
| 42 | const int expect_alive = IsArray ? 5 : 1; |
| 43 | #if TEST_STD_VER >= 11 |
| 44 | { |
| 45 | using U1 = std::unique_ptr<ValueT>; |
| 46 | using U2 = std::unique_ptr<ValueT, Deleter<ValueT> >; |
| 47 | |
| 48 | // Test for noexcept |
| 49 | static_assert(std::is_nothrow_constructible<U1, A*>::value, "" ); |
| 50 | static_assert(std::is_nothrow_constructible<U2, A*>::value, "" ); |
| 51 | |
| 52 | // Test for explicit |
| 53 | static_assert(!std::is_convertible<A*, U1>::value, "" ); |
| 54 | static_assert(!std::is_convertible<A*, U2>::value, "" ); |
| 55 | } |
| 56 | #endif |
| 57 | { |
| 58 | A* p = newValue<ValueT>(expect_alive); |
| 59 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 60 | assert(A::count == expect_alive); |
| 61 | |
| 62 | std::unique_ptr<ValueT> s(p); |
| 63 | assert(s.get() == p); |
| 64 | } |
| 65 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 66 | assert(A::count == 0); |
| 67 | { |
| 68 | A* p = newValue<ValueT>(expect_alive); |
| 69 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 70 | assert(A::count == expect_alive); |
| 71 | |
| 72 | std::unique_ptr<ValueT, NCDeleter<ValueT> > s(p); |
| 73 | assert(s.get() == p); |
| 74 | assert(s.get_deleter().state() == 0); |
| 75 | } |
| 76 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 77 | assert(A::count == 0); |
| 78 | { |
| 79 | A* p = newValue<ValueT>(expect_alive); |
| 80 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 81 | assert(A::count == expect_alive); |
| 82 | |
| 83 | std::unique_ptr<ValueT, DefaultCtorDeleter<ValueT> > s(p); |
| 84 | assert(s.get() == p); |
| 85 | assert(s.get_deleter().state() == 0); |
| 86 | } |
| 87 | if (!TEST_IS_CONSTANT_EVALUATED) |
| 88 | assert(A::count == 0); |
| 89 | } |
| 90 | |
| 91 | TEST_CONSTEXPR_CXX23 void test_derived() { |
| 92 | { |
| 93 | B* p = new B; |
| 94 | if (!TEST_IS_CONSTANT_EVALUATED) { |
| 95 | assert(A::count == 1); |
| 96 | assert(B::count == 1); |
| 97 | } |
| 98 | std::unique_ptr<A> s(p); |
| 99 | assert(s.get() == p); |
| 100 | } |
| 101 | if (!TEST_IS_CONSTANT_EVALUATED) { |
| 102 | assert(A::count == 0); |
| 103 | assert(B::count == 0); |
| 104 | } |
| 105 | { |
| 106 | B* p = new B; |
| 107 | if (!TEST_IS_CONSTANT_EVALUATED) { |
| 108 | assert(A::count == 1); |
| 109 | assert(B::count == 1); |
| 110 | } |
| 111 | std::unique_ptr<A, NCDeleter<A> > s(p); |
| 112 | assert(s.get() == p); |
| 113 | assert(s.get_deleter().state() == 0); |
| 114 | } |
| 115 | if (!TEST_IS_CONSTANT_EVALUATED) { |
| 116 | assert(A::count == 0); |
| 117 | assert(B::count == 0); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | #if TEST_STD_VER >= 11 |
| 122 | struct NonDefaultDeleter { |
| 123 | NonDefaultDeleter() = delete; |
| 124 | void operator()(void*) const {} |
| 125 | }; |
| 126 | |
| 127 | struct GenericDeleter { |
| 128 | void operator()(void*) const; |
| 129 | }; |
| 130 | #endif |
| 131 | |
| 132 | template <class T> |
| 133 | void TEST_CONSTEXPR_CXX23 test_sfinae() { |
| 134 | #if TEST_STD_VER >= 11 |
| 135 | { // the constructor does not participate in overload resolution when |
| 136 | // the deleter is a pointer type |
| 137 | using U = std::unique_ptr<T, void (*)(void*)>; |
| 138 | static_assert(!std::is_constructible<U, T*>::value, "" ); |
| 139 | } |
| 140 | { // the constructor does not participate in overload resolution when |
| 141 | // the deleter is not default constructible |
| 142 | using Del = CDeleter<T>; |
| 143 | using U1 = std::unique_ptr<T, NonDefaultDeleter>; |
| 144 | using U2 = std::unique_ptr<T, Del&>; |
| 145 | using U3 = std::unique_ptr<T, Del const&>; |
| 146 | static_assert(!std::is_constructible<U1, T*>::value, "" ); |
| 147 | static_assert(!std::is_constructible<U2, T*>::value, "" ); |
| 148 | static_assert(!std::is_constructible<U3, T*>::value, "" ); |
| 149 | } |
| 150 | #endif |
| 151 | } |
| 152 | |
| 153 | static TEST_CONSTEXPR_CXX23 void test_sfinae_runtime() { |
| 154 | #if TEST_STD_VER >= 11 |
| 155 | { // the constructor does not participate in overload resolution when |
| 156 | // a base <-> derived conversion would occur. |
| 157 | using UA = std::unique_ptr<A[]>; |
| 158 | using UAD = std::unique_ptr<A[], GenericDeleter>; |
| 159 | using UAC = std::unique_ptr<const A[]>; |
| 160 | using UB = std::unique_ptr<B[]>; |
| 161 | using UBD = std::unique_ptr<B[], GenericDeleter>; |
| 162 | using UBC = std::unique_ptr<const B[]>; |
| 163 | |
| 164 | static_assert(!std::is_constructible<UA, B*>::value, "" ); |
| 165 | static_assert(!std::is_constructible<UB, A*>::value, "" ); |
| 166 | static_assert(!std::is_constructible<UAD, B*>::value, "" ); |
| 167 | static_assert(!std::is_constructible<UBD, A*>::value, "" ); |
| 168 | static_assert(!std::is_constructible<UAC, const B*>::value, "" ); |
| 169 | static_assert(!std::is_constructible<UBC, const A*>::value, "" ); |
| 170 | } |
| 171 | #endif |
| 172 | } |
| 173 | |
| 174 | DEFINE_AND_RUN_IS_INCOMPLETE_TEST({ |
| 175 | { doIncompleteTypeTest(1, getNewIncomplete()); } |
| 176 | checkNumIncompleteTypeAlive(0); |
| 177 | { |
| 178 | doIncompleteTypeTest<IncompleteType, NCDeleter<IncompleteType> >( |
| 179 | 1, getNewIncomplete()); |
| 180 | } |
| 181 | checkNumIncompleteTypeAlive(0); |
| 182 | }) |
| 183 | |
| 184 | TEST_CONSTEXPR_CXX23 bool test() { |
| 185 | { |
| 186 | test_pointer</*IsArray*/ false>(); |
| 187 | test_derived(); |
| 188 | test_sfinae<int>(); |
| 189 | } |
| 190 | { |
| 191 | test_pointer</*IsArray*/ true>(); |
| 192 | test_sfinae<int[]>(); |
| 193 | test_sfinae_runtime(); |
| 194 | } |
| 195 | |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | int main(int, char**) { |
| 200 | test(); |
| 201 | #if TEST_STD_VER >= 23 |
| 202 | static_assert(test()); |
| 203 | #endif |
| 204 | |
| 205 | return 0; |
| 206 | } |
| 207 | |