| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // UNSUPPORTED: c++03 |
| 10 | // UNSUPPORTED: no-threads |
| 11 | |
| 12 | // <mutex> |
| 13 | |
| 14 | // class recursive_timed_mutex; |
| 15 | |
| 16 | // template <class Clock, class Duration> |
| 17 | // bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time); |
| 18 | |
| 19 | #include <mutex> |
| 20 | #include <atomic> |
| 21 | #include <cassert> |
| 22 | #include <chrono> |
| 23 | #include <thread> |
| 24 | |
| 25 | #include "make_test_thread.h" |
| 26 | |
| 27 | bool is_lockable(std::recursive_timed_mutex& m) { |
| 28 | bool did_lock; |
| 29 | std::thread t = support::make_test_thread([&] { |
| 30 | did_lock = m.try_lock(); |
| 31 | if (did_lock) |
| 32 | m.unlock(); // undo side effects |
| 33 | }); |
| 34 | t.join(); |
| 35 | |
| 36 | return did_lock; |
| 37 | } |
| 38 | |
| 39 | template <class Function> |
| 40 | std::chrono::microseconds measure(Function f) { |
| 41 | std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now(); |
| 42 | f(); |
| 43 | std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now(); |
| 44 | return std::chrono::duration_cast<std::chrono::microseconds>(d: end - start); |
| 45 | } |
| 46 | |
| 47 | int main(int, char**) { |
| 48 | // Try to lock a mutex that is not locked yet. This should succeed immediately. |
| 49 | { |
| 50 | std::recursive_timed_mutex m; |
| 51 | bool succeeded = m.try_lock_until(atime: std::chrono::steady_clock::now() + std::chrono::milliseconds(1)); |
| 52 | assert(succeeded); |
| 53 | m.unlock(); |
| 54 | } |
| 55 | |
| 56 | // Lock a mutex that is already locked by this thread. This should succeed immediately and the mutex |
| 57 | // should only be unlocked after a matching number of calls to unlock() on the same thread. |
| 58 | { |
| 59 | std::recursive_timed_mutex m; |
| 60 | int lock_count = 0; |
| 61 | for (int i = 0; i != 10; ++i) { |
| 62 | assert(m.try_lock_until(std::chrono::steady_clock::now() + std::chrono::milliseconds(1))); |
| 63 | ++lock_count; |
| 64 | } |
| 65 | while (lock_count != 0) { |
| 66 | assert(!is_lockable(m)); |
| 67 | m.unlock(); |
| 68 | --lock_count; |
| 69 | } |
| 70 | assert(is_lockable(m)); |
| 71 | } |
| 72 | |
| 73 | // Try to lock an already-locked mutex for a long enough amount of time and succeed. |
| 74 | // This is technically flaky, but we use such long durations that it should pass even |
| 75 | // in slow or contended environments. |
| 76 | { |
| 77 | std::chrono::milliseconds const wait_time(500); |
| 78 | std::chrono::milliseconds const tolerance = wait_time * 3; |
| 79 | std::atomic<bool> ready(false); |
| 80 | |
| 81 | std::recursive_timed_mutex m; |
| 82 | m.lock(); |
| 83 | |
| 84 | std::thread t = support::make_test_thread([&] { |
| 85 | auto elapsed = measure([&] { |
| 86 | ready = true; |
| 87 | bool succeeded = m.try_lock_until(std::chrono::steady_clock::now() + wait_time); |
| 88 | assert(succeeded); |
| 89 | m.unlock(); |
| 90 | }); |
| 91 | |
| 92 | // Ensure we didn't wait significantly longer than our timeout. This is technically |
| 93 | // flaky and non-conforming because an implementation is free to block for arbitrarily |
| 94 | // long, but any decent quality implementation should pass this test. |
| 95 | assert(elapsed - wait_time < tolerance); |
| 96 | }); |
| 97 | |
| 98 | // Wait for the thread to be ready to take the lock before we unlock it from here, otherwise |
| 99 | // there's a high chance that we're not testing the "locking an already locked" mutex use case. |
| 100 | // There is still technically a race condition here. |
| 101 | while (!ready) |
| 102 | /* spin */; |
| 103 | std::this_thread::sleep_for(rtime: wait_time / 5); |
| 104 | |
| 105 | m.unlock(); // this should allow the thread to lock 'm' |
| 106 | t.join(); |
| 107 | } |
| 108 | |
| 109 | // Try to lock an already-locked mutex for a short amount of time and fail. |
| 110 | // Again, this is technically flaky but we use such long durations that it should work. |
| 111 | { |
| 112 | std::chrono::milliseconds const wait_time(10); |
| 113 | std::chrono::milliseconds const tolerance(750); // in case the thread we spawned goes to sleep or something |
| 114 | |
| 115 | std::recursive_timed_mutex m; |
| 116 | m.lock(); |
| 117 | |
| 118 | std::thread t = support::make_test_thread([&] { |
| 119 | auto elapsed = measure([&] { |
| 120 | bool succeeded = m.try_lock_until(std::chrono::steady_clock::now() + wait_time); |
| 121 | assert(!succeeded); |
| 122 | }); |
| 123 | |
| 124 | // Ensure we failed within some bounded time. |
| 125 | assert(elapsed - wait_time < tolerance); |
| 126 | }); |
| 127 | |
| 128 | t.join(); |
| 129 | |
| 130 | m.unlock(); |
| 131 | } |
| 132 | |
| 133 | return 0; |
| 134 | } |
| 135 | |