| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // <random> |
| 10 | |
| 11 | // template <class UIntType, UIntType a, UIntType c, UIntType m> |
| 12 | // class linear_congruential_engine; |
| 13 | |
| 14 | // result_type operator()(); |
| 15 | |
| 16 | #include <random> |
| 17 | #include <cassert> |
| 18 | |
| 19 | #include "test_macros.h" |
| 20 | |
| 21 | int main(int, char**) |
| 22 | { |
| 23 | typedef unsigned long long T; |
| 24 | |
| 25 | // m might overflow, but the overflow is OK so it shouldn't use Schrage's algorithm |
| 26 | typedef std::linear_congruential_engine<T, 25214903917ull, 1, (1ull << 48)> E1; |
| 27 | E1 e1; |
| 28 | // make sure the right algorithm was used |
| 29 | assert(e1() == 25214903918ull); |
| 30 | assert(e1() == 205774354444503ull); |
| 31 | assert(e1() == 158051849450892ull); |
| 32 | // make sure result is in bounds |
| 33 | assert(e1() < (1ull << 48)); |
| 34 | assert(e1() < (1ull << 48)); |
| 35 | assert(e1() < (1ull << 48)); |
| 36 | assert(e1() < (1ull << 48)); |
| 37 | assert(e1() < (1ull << 48)); |
| 38 | |
| 39 | // m might overflow. The overflow is not OK and result will be in bounds |
| 40 | // so we should use Schrage's algorithm |
| 41 | typedef std::linear_congruential_engine<T, (1ull << 32), 0, (1ull << 63) + 1ull> E2; |
| 42 | E2 e2; |
| 43 | // make sure Schrage's algorithm is used (it would be 0s after the first otherwise) |
| 44 | assert(e2() == (1ull << 32)); |
| 45 | assert(e2() == (1ull << 63) - 1ull); |
| 46 | assert(e2() == (1ull << 63) - 0x1ffffffffull); |
| 47 | // make sure result is in bounds |
| 48 | assert(e2() < (1ull << 63) + 1); |
| 49 | assert(e2() < (1ull << 63) + 1); |
| 50 | assert(e2() < (1ull << 63) + 1); |
| 51 | assert(e2() < (1ull << 63) + 1); |
| 52 | assert(e2() < (1ull << 63) + 1); |
| 53 | |
| 54 | // m might overflow. The overflow is not OK and result will be in bounds |
| 55 | // so we should use Schrage's algorithm. m is even |
| 56 | typedef std::linear_congruential_engine<T, 0x18000001ull, 0x12347ull, (3ull << 56)> E3; |
| 57 | E3 e3; |
| 58 | // make sure Schrage's algorithm is used |
| 59 | assert(e3() == 0x18012348ull); |
| 60 | assert(e3() == 0x2401b4ed802468full); |
| 61 | assert(e3() == 0x18051ec400369d6ull); |
| 62 | // make sure result is in bounds |
| 63 | assert(e3() < (3ull << 56)); |
| 64 | assert(e3() < (3ull << 56)); |
| 65 | assert(e3() < (3ull << 56)); |
| 66 | assert(e3() < (3ull << 56)); |
| 67 | assert(e3() < (3ull << 56)); |
| 68 | |
| 69 | // 32-bit case: |
| 70 | // m might overflow. The overflow is not OK, result will be in bounds, |
| 71 | // and Schrage's algorithm is incompatible here. Need to use 64 bit arithmetic. |
| 72 | typedef std::linear_congruential_engine<unsigned, 0x10009u, 0u, 0x7fffffffu> E4; |
| 73 | E4 e4; |
| 74 | // make sure enough precision is used |
| 75 | assert(e4() == 0x10009u); |
| 76 | assert(e4() == 0x120053u); |
| 77 | assert(e4() == 0xf5030fu); |
| 78 | // make sure result is in bounds |
| 79 | assert(e4() < 0x7fffffffu); |
| 80 | assert(e4() < 0x7fffffffu); |
| 81 | assert(e4() < 0x7fffffffu); |
| 82 | assert(e4() < 0x7fffffffu); |
| 83 | assert(e4() < 0x7fffffffu); |
| 84 | |
| 85 | #ifndef TEST_HAS_NO_INT128 |
| 86 | // m might overflow. The overflow is not OK, result will be in bounds, |
| 87 | // and Schrage's algorithm is incompatible here. Need to use 128 bit arithmetic. |
| 88 | typedef std::linear_congruential_engine<T, 0x100000001ull, 0ull, (1ull << 61) - 1ull> E5; |
| 89 | E5 e5; |
| 90 | // make sure enough precision is used |
| 91 | assert(e5() == 0x100000001ull); |
| 92 | assert(e5() == 0x200000009ull); |
| 93 | assert(e5() == 0xb00000019ull); |
| 94 | // make sure result is in bounds |
| 95 | assert(e5() < (1ull << 61) - 1ull); |
| 96 | assert(e5() < (1ull << 61) - 1ull); |
| 97 | assert(e5() < (1ull << 61) - 1ull); |
| 98 | assert(e5() < (1ull << 61) - 1ull); |
| 99 | assert(e5() < (1ull << 61) - 1ull); |
| 100 | #endif |
| 101 | |
| 102 | // m will not overflow so we should not use Schrage's algorithm |
| 103 | typedef std::linear_congruential_engine<T, 1ull, 1, (1ull << 48)> E6; |
| 104 | E6 e6; |
| 105 | // make sure the correct algorithm was used |
| 106 | assert(e6() == 2ull); |
| 107 | assert(e6() == 3ull); |
| 108 | assert(e6() == 4ull); |
| 109 | // make sure result is in bounds |
| 110 | assert(e6() < (1ull << 48)); |
| 111 | assert(e6() < (1ull << 48)); |
| 112 | assert(e6() < (1ull << 48)); |
| 113 | assert(e6() < (1ull << 48)); |
| 114 | assert(e6() < (1ull << 48)); |
| 115 | |
| 116 | return 0; |
| 117 | } |
| 118 | |