| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class uniform_real_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <cstddef> |
| 22 | #include <numeric> |
| 23 | #include <vector> |
| 24 | |
| 25 | #include "test_macros.h" |
| 26 | |
| 27 | template <class T> |
| 28 | inline |
| 29 | T |
| 30 | sqr(T x) |
| 31 | { |
| 32 | return x * x; |
| 33 | } |
| 34 | |
| 35 | int main(int, char**) |
| 36 | { |
| 37 | { |
| 38 | typedef std::uniform_real_distribution<> D; |
| 39 | typedef std::minstd_rand0 G; |
| 40 | G g; |
| 41 | D d; |
| 42 | const int N = 100000; |
| 43 | std::vector<D::result_type> u; |
| 44 | for (int i = 0; i < N; ++i) |
| 45 | { |
| 46 | D::result_type v = d(g); |
| 47 | assert(d.a() <= v && v < d.b()); |
| 48 | u.push_back(x: v); |
| 49 | } |
| 50 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 51 | D::result_type(0)) / u.size(); |
| 52 | D::result_type var = 0; |
| 53 | D::result_type skew = 0; |
| 54 | D::result_type kurtosis = 0; |
| 55 | for (std::size_t i = 0; i < u.size(); ++i) |
| 56 | { |
| 57 | D::result_type dbl = (u[i] - mean); |
| 58 | D::result_type d2 = sqr(dbl); |
| 59 | var += d2; |
| 60 | skew += dbl * d2; |
| 61 | kurtosis += d2 * d2; |
| 62 | } |
| 63 | var /= u.size(); |
| 64 | D::result_type dev = std::sqrt(x: var); |
| 65 | skew /= u.size() * dev * var; |
| 66 | kurtosis /= u.size() * var * var; |
| 67 | kurtosis -= 3; |
| 68 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 69 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 70 | D::result_type x_skew = 0; |
| 71 | D::result_type x_kurtosis = -6./5; |
| 72 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 73 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 74 | assert(std::abs(skew - x_skew) < 0.01); |
| 75 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 76 | } |
| 77 | { |
| 78 | typedef std::uniform_real_distribution<> D; |
| 79 | typedef std::minstd_rand G; |
| 80 | G g; |
| 81 | D d; |
| 82 | const int N = 100000; |
| 83 | std::vector<D::result_type> u; |
| 84 | for (int i = 0; i < N; ++i) |
| 85 | { |
| 86 | D::result_type v = d(g); |
| 87 | assert(d.a() <= v && v < d.b()); |
| 88 | u.push_back(v); |
| 89 | } |
| 90 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 91 | D::result_type(0)) / u.size(); |
| 92 | D::result_type var = 0; |
| 93 | D::result_type skew = 0; |
| 94 | D::result_type kurtosis = 0; |
| 95 | for (std::size_t i = 0; i < u.size(); ++i) |
| 96 | { |
| 97 | D::result_type dbl = (u[i] - mean); |
| 98 | D::result_type d2 = sqr(dbl); |
| 99 | var += d2; |
| 100 | skew += dbl * d2; |
| 101 | kurtosis += d2 * d2; |
| 102 | } |
| 103 | var /= u.size(); |
| 104 | D::result_type dev = std::sqrt(var); |
| 105 | skew /= u.size() * dev * var; |
| 106 | kurtosis /= u.size() * var * var; |
| 107 | kurtosis -= 3; |
| 108 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 109 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 110 | D::result_type x_skew = 0; |
| 111 | D::result_type x_kurtosis = -6./5; |
| 112 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 113 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 114 | assert(std::abs(skew - x_skew) < 0.01); |
| 115 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 116 | } |
| 117 | { |
| 118 | typedef std::uniform_real_distribution<> D; |
| 119 | typedef std::mt19937 G; |
| 120 | G g; |
| 121 | D d; |
| 122 | const int N = 100000; |
| 123 | std::vector<D::result_type> u; |
| 124 | for (int i = 0; i < N; ++i) |
| 125 | { |
| 126 | D::result_type v = d(g); |
| 127 | assert(d.a() <= v && v < d.b()); |
| 128 | u.push_back(v); |
| 129 | } |
| 130 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 131 | D::result_type(0)) / u.size(); |
| 132 | D::result_type var = 0; |
| 133 | D::result_type skew = 0; |
| 134 | D::result_type kurtosis = 0; |
| 135 | for (std::size_t i = 0; i < u.size(); ++i) |
| 136 | { |
| 137 | D::result_type dbl = (u[i] - mean); |
| 138 | D::result_type d2 = sqr(dbl); |
| 139 | var += d2; |
| 140 | skew += dbl * d2; |
| 141 | kurtosis += d2 * d2; |
| 142 | } |
| 143 | var /= u.size(); |
| 144 | D::result_type dev = std::sqrt(var); |
| 145 | skew /= u.size() * dev * var; |
| 146 | kurtosis /= u.size() * var * var; |
| 147 | kurtosis -= 3; |
| 148 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 149 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 150 | D::result_type x_skew = 0; |
| 151 | D::result_type x_kurtosis = -6./5; |
| 152 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 153 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 154 | assert(std::abs(skew - x_skew) < 0.01); |
| 155 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 156 | } |
| 157 | { |
| 158 | typedef std::uniform_real_distribution<> D; |
| 159 | typedef std::mt19937_64 G; |
| 160 | G g; |
| 161 | D d; |
| 162 | const int N = 100000; |
| 163 | std::vector<D::result_type> u; |
| 164 | for (int i = 0; i < N; ++i) |
| 165 | { |
| 166 | D::result_type v = d(g); |
| 167 | assert(d.a() <= v && v < d.b()); |
| 168 | u.push_back(v); |
| 169 | } |
| 170 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 171 | D::result_type(0)) / u.size(); |
| 172 | D::result_type var = 0; |
| 173 | D::result_type skew = 0; |
| 174 | D::result_type kurtosis = 0; |
| 175 | for (std::size_t i = 0; i < u.size(); ++i) |
| 176 | { |
| 177 | D::result_type dbl = (u[i] - mean); |
| 178 | D::result_type d2 = sqr(dbl); |
| 179 | var += d2; |
| 180 | skew += dbl * d2; |
| 181 | kurtosis += d2 * d2; |
| 182 | } |
| 183 | var /= u.size(); |
| 184 | D::result_type dev = std::sqrt(var); |
| 185 | skew /= u.size() * dev * var; |
| 186 | kurtosis /= u.size() * var * var; |
| 187 | kurtosis -= 3; |
| 188 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 189 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 190 | D::result_type x_skew = 0; |
| 191 | D::result_type x_kurtosis = -6./5; |
| 192 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 193 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 194 | assert(std::abs(skew - x_skew) < 0.01); |
| 195 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 196 | } |
| 197 | { |
| 198 | typedef std::uniform_real_distribution<> D; |
| 199 | typedef std::ranlux24_base G; |
| 200 | G g; |
| 201 | D d; |
| 202 | const int N = 100000; |
| 203 | std::vector<D::result_type> u; |
| 204 | for (int i = 0; i < N; ++i) |
| 205 | { |
| 206 | D::result_type v = d(g); |
| 207 | assert(d.a() <= v && v < d.b()); |
| 208 | u.push_back(v); |
| 209 | } |
| 210 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 211 | D::result_type(0)) / u.size(); |
| 212 | D::result_type var = 0; |
| 213 | D::result_type skew = 0; |
| 214 | D::result_type kurtosis = 0; |
| 215 | for (std::size_t i = 0; i < u.size(); ++i) |
| 216 | { |
| 217 | D::result_type dbl = (u[i] - mean); |
| 218 | D::result_type d2 = sqr(dbl); |
| 219 | var += d2; |
| 220 | skew += dbl * d2; |
| 221 | kurtosis += d2 * d2; |
| 222 | } |
| 223 | var /= u.size(); |
| 224 | D::result_type dev = std::sqrt(var); |
| 225 | skew /= u.size() * dev * var; |
| 226 | kurtosis /= u.size() * var * var; |
| 227 | kurtosis -= 3; |
| 228 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 229 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 230 | D::result_type x_skew = 0; |
| 231 | D::result_type x_kurtosis = -6./5; |
| 232 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 233 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 234 | assert(std::abs(skew - x_skew) < 0.02); |
| 235 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 236 | } |
| 237 | { |
| 238 | typedef std::uniform_real_distribution<> D; |
| 239 | typedef std::ranlux48_base G; |
| 240 | G g; |
| 241 | D d; |
| 242 | const int N = 100000; |
| 243 | std::vector<D::result_type> u; |
| 244 | for (int i = 0; i < N; ++i) |
| 245 | { |
| 246 | D::result_type v = d(g); |
| 247 | assert(d.a() <= v && v < d.b()); |
| 248 | u.push_back(v); |
| 249 | } |
| 250 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 251 | D::result_type(0)) / u.size(); |
| 252 | D::result_type var = 0; |
| 253 | D::result_type skew = 0; |
| 254 | D::result_type kurtosis = 0; |
| 255 | for (std::size_t i = 0; i < u.size(); ++i) |
| 256 | { |
| 257 | D::result_type dbl = (u[i] - mean); |
| 258 | D::result_type d2 = sqr(dbl); |
| 259 | var += d2; |
| 260 | skew += dbl * d2; |
| 261 | kurtosis += d2 * d2; |
| 262 | } |
| 263 | var /= u.size(); |
| 264 | D::result_type dev = std::sqrt(var); |
| 265 | skew /= u.size() * dev * var; |
| 266 | kurtosis /= u.size() * var * var; |
| 267 | kurtosis -= 3; |
| 268 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 269 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 270 | D::result_type x_skew = 0; |
| 271 | D::result_type x_kurtosis = -6./5; |
| 272 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 273 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 274 | assert(std::abs(skew - x_skew) < 0.01); |
| 275 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 276 | } |
| 277 | { |
| 278 | typedef std::uniform_real_distribution<> D; |
| 279 | typedef std::ranlux24 G; |
| 280 | G g; |
| 281 | D d; |
| 282 | const int N = 100000; |
| 283 | std::vector<D::result_type> u; |
| 284 | for (int i = 0; i < N; ++i) |
| 285 | { |
| 286 | D::result_type v = d(g); |
| 287 | assert(d.a() <= v && v < d.b()); |
| 288 | u.push_back(v); |
| 289 | } |
| 290 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 291 | D::result_type(0)) / u.size(); |
| 292 | D::result_type var = 0; |
| 293 | D::result_type skew = 0; |
| 294 | D::result_type kurtosis = 0; |
| 295 | for (std::size_t i = 0; i < u.size(); ++i) |
| 296 | { |
| 297 | D::result_type dbl = (u[i] - mean); |
| 298 | D::result_type d2 = sqr(dbl); |
| 299 | var += d2; |
| 300 | skew += dbl * d2; |
| 301 | kurtosis += d2 * d2; |
| 302 | } |
| 303 | var /= u.size(); |
| 304 | D::result_type dev = std::sqrt(var); |
| 305 | skew /= u.size() * dev * var; |
| 306 | kurtosis /= u.size() * var * var; |
| 307 | kurtosis -= 3; |
| 308 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 309 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 310 | D::result_type x_skew = 0; |
| 311 | D::result_type x_kurtosis = -6./5; |
| 312 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 313 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 314 | assert(std::abs(skew - x_skew) < 0.01); |
| 315 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 316 | } |
| 317 | { |
| 318 | typedef std::uniform_real_distribution<> D; |
| 319 | typedef std::ranlux48 G; |
| 320 | G g; |
| 321 | D d; |
| 322 | const int N = 100000; |
| 323 | std::vector<D::result_type> u; |
| 324 | for (int i = 0; i < N; ++i) |
| 325 | { |
| 326 | D::result_type v = d(g); |
| 327 | assert(d.a() <= v && v < d.b()); |
| 328 | u.push_back(v); |
| 329 | } |
| 330 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 331 | D::result_type(0)) / u.size(); |
| 332 | D::result_type var = 0; |
| 333 | D::result_type skew = 0; |
| 334 | D::result_type kurtosis = 0; |
| 335 | for (std::size_t i = 0; i < u.size(); ++i) |
| 336 | { |
| 337 | D::result_type dbl = (u[i] - mean); |
| 338 | D::result_type d2 = sqr(dbl); |
| 339 | var += d2; |
| 340 | skew += dbl * d2; |
| 341 | kurtosis += d2 * d2; |
| 342 | } |
| 343 | var /= u.size(); |
| 344 | D::result_type dev = std::sqrt(var); |
| 345 | skew /= u.size() * dev * var; |
| 346 | kurtosis /= u.size() * var * var; |
| 347 | kurtosis -= 3; |
| 348 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 349 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 350 | D::result_type x_skew = 0; |
| 351 | D::result_type x_kurtosis = -6./5; |
| 352 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 353 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 354 | assert(std::abs(skew - x_skew) < 0.01); |
| 355 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 356 | } |
| 357 | { |
| 358 | typedef std::uniform_real_distribution<> D; |
| 359 | typedef std::knuth_b G; |
| 360 | G g; |
| 361 | D d; |
| 362 | const int N = 100000; |
| 363 | std::vector<D::result_type> u; |
| 364 | for (int i = 0; i < N; ++i) |
| 365 | { |
| 366 | D::result_type v = d(g); |
| 367 | assert(d.a() <= v && v < d.b()); |
| 368 | u.push_back(v); |
| 369 | } |
| 370 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 371 | D::result_type(0)) / u.size(); |
| 372 | D::result_type var = 0; |
| 373 | D::result_type skew = 0; |
| 374 | D::result_type kurtosis = 0; |
| 375 | for (std::size_t i = 0; i < u.size(); ++i) |
| 376 | { |
| 377 | D::result_type dbl = (u[i] - mean); |
| 378 | D::result_type d2 = sqr(dbl); |
| 379 | var += d2; |
| 380 | skew += dbl * d2; |
| 381 | kurtosis += d2 * d2; |
| 382 | } |
| 383 | var /= u.size(); |
| 384 | D::result_type dev = std::sqrt(var); |
| 385 | skew /= u.size() * dev * var; |
| 386 | kurtosis /= u.size() * var * var; |
| 387 | kurtosis -= 3; |
| 388 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 389 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 390 | D::result_type x_skew = 0; |
| 391 | D::result_type x_kurtosis = -6./5; |
| 392 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 393 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 394 | assert(std::abs(skew - x_skew) < 0.01); |
| 395 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 396 | } |
| 397 | { |
| 398 | typedef std::uniform_real_distribution<> D; |
| 399 | typedef std::minstd_rand G; |
| 400 | G g; |
| 401 | D d(-1, 1); |
| 402 | const int N = 100000; |
| 403 | std::vector<D::result_type> u; |
| 404 | for (int i = 0; i < N; ++i) |
| 405 | { |
| 406 | D::result_type v = d(g); |
| 407 | assert(d.a() <= v && v < d.b()); |
| 408 | u.push_back(v); |
| 409 | } |
| 410 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 411 | D::result_type(0)) / u.size(); |
| 412 | D::result_type var = 0; |
| 413 | D::result_type skew = 0; |
| 414 | D::result_type kurtosis = 0; |
| 415 | for (std::size_t i = 0; i < u.size(); ++i) |
| 416 | { |
| 417 | D::result_type dbl = (u[i] - mean); |
| 418 | D::result_type d2 = sqr(dbl); |
| 419 | var += d2; |
| 420 | skew += dbl * d2; |
| 421 | kurtosis += d2 * d2; |
| 422 | } |
| 423 | var /= u.size(); |
| 424 | D::result_type dev = std::sqrt(var); |
| 425 | skew /= u.size() * dev * var; |
| 426 | kurtosis /= u.size() * var * var; |
| 427 | kurtosis -= 3; |
| 428 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 429 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 430 | D::result_type x_skew = 0; |
| 431 | D::result_type x_kurtosis = -6./5; |
| 432 | assert(std::abs(mean - x_mean) < 0.01); |
| 433 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 434 | assert(std::abs(skew - x_skew) < 0.01); |
| 435 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 436 | } |
| 437 | { |
| 438 | typedef std::uniform_real_distribution<> D; |
| 439 | typedef std::minstd_rand G; |
| 440 | G g; |
| 441 | D d(5.5, 25); |
| 442 | const int N = 100000; |
| 443 | std::vector<D::result_type> u; |
| 444 | for (int i = 0; i < N; ++i) |
| 445 | { |
| 446 | D::result_type v = d(g); |
| 447 | assert(d.a() <= v && v < d.b()); |
| 448 | u.push_back(v); |
| 449 | } |
| 450 | D::result_type mean = std::accumulate(u.begin(), u.end(), |
| 451 | D::result_type(0)) / u.size(); |
| 452 | D::result_type var = 0; |
| 453 | D::result_type skew = 0; |
| 454 | D::result_type kurtosis = 0; |
| 455 | for (std::size_t i = 0; i < u.size(); ++i) |
| 456 | { |
| 457 | D::result_type dbl = (u[i] - mean); |
| 458 | D::result_type d2 = sqr(dbl); |
| 459 | var += d2; |
| 460 | skew += dbl * d2; |
| 461 | kurtosis += d2 * d2; |
| 462 | } |
| 463 | var /= u.size(); |
| 464 | D::result_type dev = std::sqrt(var); |
| 465 | skew /= u.size() * dev * var; |
| 466 | kurtosis /= u.size() * var * var; |
| 467 | kurtosis -= 3; |
| 468 | D::result_type x_mean = (d.a() + d.b()) / 2; |
| 469 | D::result_type x_var = sqr(d.b() - d.a()) / 12; |
| 470 | D::result_type x_skew = 0; |
| 471 | D::result_type x_kurtosis = -6./5; |
| 472 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 473 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 474 | assert(std::abs(skew - x_skew) < 0.01); |
| 475 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 476 | } |
| 477 | |
| 478 | return 0; |
| 479 | } |
| 480 | |