| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class piecewise_linear_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); |
| 17 | |
| 18 | #include <algorithm> // for sort |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <cstddef> |
| 22 | #include <limits> |
| 23 | #include <random> |
| 24 | #include <vector> |
| 25 | |
| 26 | #include "test_macros.h" |
| 27 | |
| 28 | template <class T> |
| 29 | inline |
| 30 | T |
| 31 | sqr(T x) |
| 32 | { |
| 33 | return x*x; |
| 34 | } |
| 35 | |
| 36 | double |
| 37 | f(double x, double a, double m, double b, double c) |
| 38 | { |
| 39 | return a + m*(sqr(x) - sqr(b))/2 + c*(x-b); |
| 40 | } |
| 41 | |
| 42 | int main(int, char**) |
| 43 | { |
| 44 | { |
| 45 | typedef std::piecewise_linear_distribution<> D; |
| 46 | typedef D::param_type P; |
| 47 | typedef std::mt19937_64 G; |
| 48 | G g; |
| 49 | double b[] = {10, 14, 16, 17}; |
| 50 | double p[] = {25, 62.5, 12.5, 0}; |
| 51 | const std::size_t Np = sizeof(p) / sizeof(p[0]) - 1; |
| 52 | D d; |
| 53 | P pa(b, b+Np+1, p); |
| 54 | const std::size_t N = 1000000; |
| 55 | std::vector<D::result_type> u; |
| 56 | for (std::size_t i = 0; i < N; ++i) |
| 57 | { |
| 58 | D::result_type v = d(g, pa); |
| 59 | assert(10 <= v && v < 17); |
| 60 | u.push_back(x: v); |
| 61 | } |
| 62 | std::sort(first: u.begin(), last: u.end()); |
| 63 | std::ptrdiff_t kp = -1; |
| 64 | double a = std::numeric_limits<double>::quiet_NaN(); |
| 65 | double m = std::numeric_limits<double>::quiet_NaN(); |
| 66 | double bk = std::numeric_limits<double>::quiet_NaN(); |
| 67 | double c = std::numeric_limits<double>::quiet_NaN(); |
| 68 | std::vector<double> areas(Np); |
| 69 | double S = 0; |
| 70 | for (std::size_t i = 0; i < areas.size(); ++i) |
| 71 | { |
| 72 | areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; |
| 73 | S += areas[i]; |
| 74 | } |
| 75 | for (std::size_t i = 0; i < areas.size(); ++i) |
| 76 | areas[i] /= S; |
| 77 | for (std::size_t i = 0; i < Np+1; ++i) |
| 78 | p[i] /= S; |
| 79 | for (std::size_t i = 0; i < N; ++i) |
| 80 | { |
| 81 | std::ptrdiff_t k = std::lower_bound(first: b, last: b + Np + 1, val: u[i]) - b - 1; |
| 82 | if (k != kp) { |
| 83 | a = 0; |
| 84 | for (int j = 0; j < k; ++j) |
| 85 | a += areas[j]; |
| 86 | m = (p[k + 1] - p[k]) / (b[k + 1] - b[k]); |
| 87 | bk = b[k]; |
| 88 | c = (b[k + 1] * p[k] - b[k] * p[k + 1]) / (b[k + 1] - b[k]); |
| 89 | kp = k; |
| 90 | } |
| 91 | assert(std::abs(f(u[i], a, m, bk, c) - double(i) / N) < .0013); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | |