| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class piecewise_constant_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <algorithm> // for sort |
| 20 | #include <cassert> |
| 21 | #include <cmath> |
| 22 | #include <iterator> |
| 23 | #include <numeric> |
| 24 | #include <vector> |
| 25 | |
| 26 | #include "test_macros.h" |
| 27 | |
| 28 | template <class T> |
| 29 | inline |
| 30 | T |
| 31 | sqr(T x) |
| 32 | { |
| 33 | return x*x; |
| 34 | } |
| 35 | |
| 36 | void |
| 37 | test1() |
| 38 | { |
| 39 | typedef std::piecewise_constant_distribution<> D; |
| 40 | typedef std::mt19937_64 G; |
| 41 | G g; |
| 42 | double b[] = {10, 14, 16, 17}; |
| 43 | double p[] = {25, 62.5, 12.5}; |
| 44 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 45 | D d(b, b+Np+1, p); |
| 46 | const int N = 1000000; |
| 47 | std::vector<D::result_type> u; |
| 48 | for (int i = 0; i < N; ++i) |
| 49 | { |
| 50 | D::result_type v = d(g); |
| 51 | assert(d.min() <= v && v < d.max()); |
| 52 | u.push_back(v); |
| 53 | } |
| 54 | std::vector<double> prob(std::begin(p), std::end(p)); |
| 55 | double s = std::accumulate(prob.begin(), prob.end(), 0.0); |
| 56 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 57 | prob[i] /= s; |
| 58 | std::sort(u.begin(), u.end()); |
| 59 | for (std::size_t i = 0; i < Np; ++i) |
| 60 | { |
| 61 | typedef std::vector<D::result_type>::iterator I; |
| 62 | I lb = std::lower_bound(u.begin(), u.end(), b[i]); |
| 63 | I ub = std::lower_bound(u.begin(), u.end(), b[i+1]); |
| 64 | const std::size_t Ni = ub - lb; |
| 65 | if (prob[i] == 0) |
| 66 | assert(Ni == 0); |
| 67 | else |
| 68 | { |
| 69 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 70 | double mean = std::accumulate(lb, ub, 0.0) / Ni; |
| 71 | double var = 0; |
| 72 | double skew = 0; |
| 73 | double kurtosis = 0; |
| 74 | for (I j = lb; j != ub; ++j) |
| 75 | { |
| 76 | double dbl = (*j - mean); |
| 77 | double d2 = sqr(dbl); |
| 78 | var += d2; |
| 79 | skew += dbl * d2; |
| 80 | kurtosis += d2 * d2; |
| 81 | } |
| 82 | var /= Ni; |
| 83 | double dev = std::sqrt(x: var); |
| 84 | skew /= Ni * dev * var; |
| 85 | kurtosis /= Ni * var * var; |
| 86 | kurtosis -= 3; |
| 87 | double x_mean = (b[i+1] + b[i]) / 2; |
| 88 | double x_var = sqr(b[i+1] - b[i]) / 12; |
| 89 | double x_skew = 0; |
| 90 | double x_kurtosis = -6./5; |
| 91 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 92 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 93 | assert(std::abs(skew - x_skew) < 0.01); |
| 94 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | void |
| 100 | test2() |
| 101 | { |
| 102 | typedef std::piecewise_constant_distribution<> D; |
| 103 | typedef std::mt19937_64 G; |
| 104 | G g; |
| 105 | double b[] = {10, 14, 16, 17}; |
| 106 | double p[] = {0, 62.5, 12.5}; |
| 107 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 108 | D d(b, b+Np+1, p); |
| 109 | const int N = 1000000; |
| 110 | std::vector<D::result_type> u; |
| 111 | for (int i = 0; i < N; ++i) |
| 112 | { |
| 113 | D::result_type v = d(g); |
| 114 | assert(d.min() <= v && v < d.max()); |
| 115 | u.push_back(x: v); |
| 116 | } |
| 117 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 118 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 119 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 120 | prob[i] /= s; |
| 121 | std::sort(first: u.begin(), last: u.end()); |
| 122 | for (std::size_t i = 0; i < Np; ++i) |
| 123 | { |
| 124 | typedef std::vector<D::result_type>::iterator I; |
| 125 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 126 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 127 | const std::size_t Ni = ub - lb; |
| 128 | if (prob[i] == 0) |
| 129 | assert(Ni == 0); |
| 130 | else |
| 131 | { |
| 132 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 133 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 134 | double var = 0; |
| 135 | double skew = 0; |
| 136 | double kurtosis = 0; |
| 137 | for (I j = lb; j != ub; ++j) |
| 138 | { |
| 139 | double dbl = (*j - mean); |
| 140 | double d2 = sqr(x: dbl); |
| 141 | var += d2; |
| 142 | skew += dbl * d2; |
| 143 | kurtosis += d2 * d2; |
| 144 | } |
| 145 | var /= Ni; |
| 146 | double dev = std::sqrt(x: var); |
| 147 | skew /= Ni * dev * var; |
| 148 | kurtosis /= Ni * var * var; |
| 149 | kurtosis -= 3; |
| 150 | double x_mean = (b[i+1] + b[i]) / 2; |
| 151 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 152 | double x_skew = 0; |
| 153 | double x_kurtosis = -6./5; |
| 154 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 155 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 156 | assert(std::abs(skew - x_skew) < 0.01); |
| 157 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void |
| 163 | test3() |
| 164 | { |
| 165 | typedef std::piecewise_constant_distribution<> D; |
| 166 | typedef std::mt19937_64 G; |
| 167 | G g; |
| 168 | double b[] = {10, 14, 16, 17}; |
| 169 | double p[] = {25, 0, 12.5}; |
| 170 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 171 | D d(b, b+Np+1, p); |
| 172 | const int N = 1000000; |
| 173 | std::vector<D::result_type> u; |
| 174 | for (int i = 0; i < N; ++i) |
| 175 | { |
| 176 | D::result_type v = d(g); |
| 177 | assert(d.min() <= v && v < d.max()); |
| 178 | u.push_back(x: v); |
| 179 | } |
| 180 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 181 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 182 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 183 | prob[i] /= s; |
| 184 | std::sort(first: u.begin(), last: u.end()); |
| 185 | for (std::size_t i = 0; i < Np; ++i) |
| 186 | { |
| 187 | typedef std::vector<D::result_type>::iterator I; |
| 188 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 189 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 190 | const std::size_t Ni = ub - lb; |
| 191 | if (prob[i] == 0) |
| 192 | assert(Ni == 0); |
| 193 | else |
| 194 | { |
| 195 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 196 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 197 | double var = 0; |
| 198 | double skew = 0; |
| 199 | double kurtosis = 0; |
| 200 | for (I j = lb; j != ub; ++j) |
| 201 | { |
| 202 | double dbl = (*j - mean); |
| 203 | double d2 = sqr(x: dbl); |
| 204 | var += d2; |
| 205 | skew += dbl * d2; |
| 206 | kurtosis += d2 * d2; |
| 207 | } |
| 208 | var /= Ni; |
| 209 | double dev = std::sqrt(x: var); |
| 210 | skew /= Ni * dev * var; |
| 211 | kurtosis /= Ni * var * var; |
| 212 | kurtosis -= 3; |
| 213 | double x_mean = (b[i+1] + b[i]) / 2; |
| 214 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 215 | double x_skew = 0; |
| 216 | double x_kurtosis = -6./5; |
| 217 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 218 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 219 | assert(std::abs(skew - x_skew) < 0.01); |
| 220 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | void |
| 226 | test4() |
| 227 | { |
| 228 | typedef std::piecewise_constant_distribution<> D; |
| 229 | typedef std::mt19937_64 G; |
| 230 | G g; |
| 231 | double b[] = {10, 14, 16, 17}; |
| 232 | double p[] = {25, 62.5, 0}; |
| 233 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 234 | D d(b, b+Np+1, p); |
| 235 | const int N = 1000000; |
| 236 | std::vector<D::result_type> u; |
| 237 | for (int i = 0; i < N; ++i) |
| 238 | { |
| 239 | D::result_type v = d(g); |
| 240 | assert(d.min() <= v && v < d.max()); |
| 241 | u.push_back(x: v); |
| 242 | } |
| 243 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 244 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 245 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 246 | prob[i] /= s; |
| 247 | std::sort(first: u.begin(), last: u.end()); |
| 248 | for (std::size_t i = 0; i < Np; ++i) |
| 249 | { |
| 250 | typedef std::vector<D::result_type>::iterator I; |
| 251 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 252 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 253 | const std::size_t Ni = ub - lb; |
| 254 | if (prob[i] == 0) |
| 255 | assert(Ni == 0); |
| 256 | else |
| 257 | { |
| 258 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 259 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 260 | double var = 0; |
| 261 | double skew = 0; |
| 262 | double kurtosis = 0; |
| 263 | for (I j = lb; j != ub; ++j) |
| 264 | { |
| 265 | double dbl = (*j - mean); |
| 266 | double d2 = sqr(x: dbl); |
| 267 | var += d2; |
| 268 | skew += dbl * d2; |
| 269 | kurtosis += d2 * d2; |
| 270 | } |
| 271 | var /= Ni; |
| 272 | double dev = std::sqrt(x: var); |
| 273 | skew /= Ni * dev * var; |
| 274 | kurtosis /= Ni * var * var; |
| 275 | kurtosis -= 3; |
| 276 | double x_mean = (b[i+1] + b[i]) / 2; |
| 277 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 278 | double x_skew = 0; |
| 279 | double x_kurtosis = -6./5; |
| 280 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 281 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 282 | assert(std::abs(skew - x_skew) < 0.01); |
| 283 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | void |
| 289 | test5() |
| 290 | { |
| 291 | typedef std::piecewise_constant_distribution<> D; |
| 292 | typedef std::mt19937_64 G; |
| 293 | G g; |
| 294 | double b[] = {10, 14, 16, 17}; |
| 295 | double p[] = {25, 0, 0}; |
| 296 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 297 | D d(b, b+Np+1, p); |
| 298 | const int N = 100000; |
| 299 | std::vector<D::result_type> u; |
| 300 | for (int i = 0; i < N; ++i) |
| 301 | { |
| 302 | D::result_type v = d(g); |
| 303 | assert(d.min() <= v && v < d.max()); |
| 304 | u.push_back(x: v); |
| 305 | } |
| 306 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 307 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 308 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 309 | prob[i] /= s; |
| 310 | std::sort(first: u.begin(), last: u.end()); |
| 311 | for (std::size_t i = 0; i < Np; ++i) |
| 312 | { |
| 313 | typedef std::vector<D::result_type>::iterator I; |
| 314 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 315 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 316 | const std::size_t Ni = ub - lb; |
| 317 | if (prob[i] == 0) |
| 318 | assert(Ni == 0); |
| 319 | else |
| 320 | { |
| 321 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 322 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 323 | double var = 0; |
| 324 | double skew = 0; |
| 325 | double kurtosis = 0; |
| 326 | for (I j = lb; j != ub; ++j) |
| 327 | { |
| 328 | double dbl = (*j - mean); |
| 329 | double d2 = sqr(x: dbl); |
| 330 | var += d2; |
| 331 | skew += dbl * d2; |
| 332 | kurtosis += d2 * d2; |
| 333 | } |
| 334 | var /= Ni; |
| 335 | double dev = std::sqrt(x: var); |
| 336 | skew /= Ni * dev * var; |
| 337 | kurtosis /= Ni * var * var; |
| 338 | kurtosis -= 3; |
| 339 | double x_mean = (b[i+1] + b[i]) / 2; |
| 340 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 341 | double x_skew = 0; |
| 342 | double x_kurtosis = -6./5; |
| 343 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 344 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 345 | assert(std::abs(skew - x_skew) < 0.01); |
| 346 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 347 | } |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | void |
| 352 | test6() |
| 353 | { |
| 354 | typedef std::piecewise_constant_distribution<> D; |
| 355 | typedef std::mt19937_64 G; |
| 356 | G g; |
| 357 | double b[] = {10, 14, 16, 17}; |
| 358 | double p[] = {0, 25, 0}; |
| 359 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 360 | D d(b, b+Np+1, p); |
| 361 | const int N = 100000; |
| 362 | std::vector<D::result_type> u; |
| 363 | for (int i = 0; i < N; ++i) |
| 364 | { |
| 365 | D::result_type v = d(g); |
| 366 | assert(d.min() <= v && v < d.max()); |
| 367 | u.push_back(x: v); |
| 368 | } |
| 369 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 370 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 371 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 372 | prob[i] /= s; |
| 373 | std::sort(first: u.begin(), last: u.end()); |
| 374 | for (std::size_t i = 0; i < Np; ++i) |
| 375 | { |
| 376 | typedef std::vector<D::result_type>::iterator I; |
| 377 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 378 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 379 | const std::size_t Ni = ub - lb; |
| 380 | if (prob[i] == 0) |
| 381 | assert(Ni == 0); |
| 382 | else |
| 383 | { |
| 384 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 385 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 386 | double var = 0; |
| 387 | double skew = 0; |
| 388 | double kurtosis = 0; |
| 389 | for (I j = lb; j != ub; ++j) |
| 390 | { |
| 391 | double dbl = (*j - mean); |
| 392 | double d2 = sqr(x: dbl); |
| 393 | var += d2; |
| 394 | skew += dbl * d2; |
| 395 | kurtosis += d2 * d2; |
| 396 | } |
| 397 | var /= Ni; |
| 398 | double dev = std::sqrt(x: var); |
| 399 | skew /= Ni * dev * var; |
| 400 | kurtosis /= Ni * var * var; |
| 401 | kurtosis -= 3; |
| 402 | double x_mean = (b[i+1] + b[i]) / 2; |
| 403 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 404 | double x_skew = 0; |
| 405 | double x_kurtosis = -6./5; |
| 406 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 407 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 408 | assert(std::abs(skew - x_skew) < 0.01); |
| 409 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | void |
| 415 | test7() |
| 416 | { |
| 417 | typedef std::piecewise_constant_distribution<> D; |
| 418 | typedef std::mt19937_64 G; |
| 419 | G g; |
| 420 | double b[] = {10, 14, 16, 17}; |
| 421 | double p[] = {0, 0, 1}; |
| 422 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 423 | D d(b, b+Np+1, p); |
| 424 | const int N = 100000; |
| 425 | std::vector<D::result_type> u; |
| 426 | for (int i = 0; i < N; ++i) |
| 427 | { |
| 428 | D::result_type v = d(g); |
| 429 | assert(d.min() <= v && v < d.max()); |
| 430 | u.push_back(x: v); |
| 431 | } |
| 432 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 433 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 434 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 435 | prob[i] /= s; |
| 436 | std::sort(first: u.begin(), last: u.end()); |
| 437 | for (std::size_t i = 0; i < Np; ++i) |
| 438 | { |
| 439 | typedef std::vector<D::result_type>::iterator I; |
| 440 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 441 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 442 | const std::size_t Ni = ub - lb; |
| 443 | if (prob[i] == 0) |
| 444 | assert(Ni == 0); |
| 445 | else |
| 446 | { |
| 447 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 448 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 449 | double var = 0; |
| 450 | double skew = 0; |
| 451 | double kurtosis = 0; |
| 452 | for (I j = lb; j != ub; ++j) |
| 453 | { |
| 454 | double dbl = (*j - mean); |
| 455 | double d2 = sqr(x: dbl); |
| 456 | var += d2; |
| 457 | skew += dbl * d2; |
| 458 | kurtosis += d2 * d2; |
| 459 | } |
| 460 | var /= Ni; |
| 461 | double dev = std::sqrt(x: var); |
| 462 | skew /= Ni * dev * var; |
| 463 | kurtosis /= Ni * var * var; |
| 464 | kurtosis -= 3; |
| 465 | double x_mean = (b[i+1] + b[i]) / 2; |
| 466 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 467 | double x_skew = 0; |
| 468 | double x_kurtosis = -6./5; |
| 469 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 470 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 471 | assert(std::abs(skew - x_skew) < 0.01); |
| 472 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | void |
| 478 | test8() |
| 479 | { |
| 480 | typedef std::piecewise_constant_distribution<> D; |
| 481 | typedef std::mt19937_64 G; |
| 482 | G g; |
| 483 | double b[] = {10, 14, 16}; |
| 484 | double p[] = {75, 25}; |
| 485 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 486 | D d(b, b+Np+1, p); |
| 487 | const int N = 100000; |
| 488 | std::vector<D::result_type> u; |
| 489 | for (int i = 0; i < N; ++i) |
| 490 | { |
| 491 | D::result_type v = d(g); |
| 492 | assert(d.min() <= v && v < d.max()); |
| 493 | u.push_back(x: v); |
| 494 | } |
| 495 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 496 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 497 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 498 | prob[i] /= s; |
| 499 | std::sort(first: u.begin(), last: u.end()); |
| 500 | for (std::size_t i = 0; i < Np; ++i) |
| 501 | { |
| 502 | typedef std::vector<D::result_type>::iterator I; |
| 503 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 504 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 505 | const std::size_t Ni = ub - lb; |
| 506 | if (prob[i] == 0) |
| 507 | assert(Ni == 0); |
| 508 | else |
| 509 | { |
| 510 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 511 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 512 | double var = 0; |
| 513 | double skew = 0; |
| 514 | double kurtosis = 0; |
| 515 | for (I j = lb; j != ub; ++j) |
| 516 | { |
| 517 | double dbl = (*j - mean); |
| 518 | double d2 = sqr(x: dbl); |
| 519 | var += d2; |
| 520 | skew += dbl * d2; |
| 521 | kurtosis += d2 * d2; |
| 522 | } |
| 523 | var /= Ni; |
| 524 | double dev = std::sqrt(x: var); |
| 525 | skew /= Ni * dev * var; |
| 526 | kurtosis /= Ni * var * var; |
| 527 | kurtosis -= 3; |
| 528 | double x_mean = (b[i+1] + b[i]) / 2; |
| 529 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 530 | double x_skew = 0; |
| 531 | double x_kurtosis = -6./5; |
| 532 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 533 | assert(std::abs((var - x_var) / x_var) < 0.02); |
| 534 | assert(std::abs(skew - x_skew) < 0.02); |
| 535 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 536 | } |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | void |
| 541 | test9() |
| 542 | { |
| 543 | typedef std::piecewise_constant_distribution<> D; |
| 544 | typedef std::mt19937_64 G; |
| 545 | G g; |
| 546 | double b[] = {10, 14, 16}; |
| 547 | double p[] = {0, 25}; |
| 548 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 549 | D d(b, b+Np+1, p); |
| 550 | const int N = 100000; |
| 551 | std::vector<D::result_type> u; |
| 552 | for (int i = 0; i < N; ++i) |
| 553 | { |
| 554 | D::result_type v = d(g); |
| 555 | assert(d.min() <= v && v < d.max()); |
| 556 | u.push_back(x: v); |
| 557 | } |
| 558 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 559 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 560 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 561 | prob[i] /= s; |
| 562 | std::sort(first: u.begin(), last: u.end()); |
| 563 | for (std::size_t i = 0; i < Np; ++i) |
| 564 | { |
| 565 | typedef std::vector<D::result_type>::iterator I; |
| 566 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 567 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 568 | const std::size_t Ni = ub - lb; |
| 569 | if (prob[i] == 0) |
| 570 | assert(Ni == 0); |
| 571 | else |
| 572 | { |
| 573 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 574 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 575 | double var = 0; |
| 576 | double skew = 0; |
| 577 | double kurtosis = 0; |
| 578 | for (I j = lb; j != ub; ++j) |
| 579 | { |
| 580 | double dbl = (*j - mean); |
| 581 | double d2 = sqr(x: dbl); |
| 582 | var += d2; |
| 583 | skew += dbl * d2; |
| 584 | kurtosis += d2 * d2; |
| 585 | } |
| 586 | var /= Ni; |
| 587 | double dev = std::sqrt(x: var); |
| 588 | skew /= Ni * dev * var; |
| 589 | kurtosis /= Ni * var * var; |
| 590 | kurtosis -= 3; |
| 591 | double x_mean = (b[i+1] + b[i]) / 2; |
| 592 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 593 | double x_skew = 0; |
| 594 | double x_kurtosis = -6./5; |
| 595 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 596 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 597 | assert(std::abs(skew - x_skew) < 0.01); |
| 598 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | void |
| 604 | test10() |
| 605 | { |
| 606 | typedef std::piecewise_constant_distribution<> D; |
| 607 | typedef std::mt19937_64 G; |
| 608 | G g; |
| 609 | double b[] = {10, 14, 16}; |
| 610 | double p[] = {1, 0}; |
| 611 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 612 | D d(b, b+Np+1, p); |
| 613 | const int N = 100000; |
| 614 | std::vector<D::result_type> u; |
| 615 | for (int i = 0; i < N; ++i) |
| 616 | { |
| 617 | D::result_type v = d(g); |
| 618 | assert(d.min() <= v && v < d.max()); |
| 619 | u.push_back(x: v); |
| 620 | } |
| 621 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 622 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 623 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 624 | prob[i] /= s; |
| 625 | std::sort(first: u.begin(), last: u.end()); |
| 626 | for (std::size_t i = 0; i < Np; ++i) |
| 627 | { |
| 628 | typedef std::vector<D::result_type>::iterator I; |
| 629 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 630 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 631 | const std::size_t Ni = ub - lb; |
| 632 | if (prob[i] == 0) |
| 633 | assert(Ni == 0); |
| 634 | else |
| 635 | { |
| 636 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 637 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 638 | double var = 0; |
| 639 | double skew = 0; |
| 640 | double kurtosis = 0; |
| 641 | for (I j = lb; j != ub; ++j) |
| 642 | { |
| 643 | double dbl = (*j - mean); |
| 644 | double d2 = sqr(x: dbl); |
| 645 | var += d2; |
| 646 | skew += dbl * d2; |
| 647 | kurtosis += d2 * d2; |
| 648 | } |
| 649 | var /= Ni; |
| 650 | double dev = std::sqrt(x: var); |
| 651 | skew /= Ni * dev * var; |
| 652 | kurtosis /= Ni * var * var; |
| 653 | kurtosis -= 3; |
| 654 | double x_mean = (b[i+1] + b[i]) / 2; |
| 655 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 656 | double x_skew = 0; |
| 657 | double x_kurtosis = -6./5; |
| 658 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 659 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 660 | assert(std::abs(skew - x_skew) < 0.01); |
| 661 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | void |
| 667 | test11() |
| 668 | { |
| 669 | typedef std::piecewise_constant_distribution<> D; |
| 670 | typedef std::mt19937_64 G; |
| 671 | G g; |
| 672 | double b[] = {10, 14}; |
| 673 | double p[] = {1}; |
| 674 | const std::size_t Np = sizeof(p) / sizeof(p[0]); |
| 675 | D d(b, b+Np+1, p); |
| 676 | const int N = 100000; |
| 677 | std::vector<D::result_type> u; |
| 678 | for (int i = 0; i < N; ++i) |
| 679 | { |
| 680 | D::result_type v = d(g); |
| 681 | assert(d.min() <= v && v < d.max()); |
| 682 | u.push_back(x: v); |
| 683 | } |
| 684 | std::vector<double> prob(std::begin(arr&: p), std::end(arr&: p)); |
| 685 | double s = std::accumulate(first: prob.begin(), last: prob.end(), init: 0.0); |
| 686 | for (std::size_t i = 0; i < prob.size(); ++i) |
| 687 | prob[i] /= s; |
| 688 | std::sort(first: u.begin(), last: u.end()); |
| 689 | for (std::size_t i = 0; i < Np; ++i) |
| 690 | { |
| 691 | typedef std::vector<D::result_type>::iterator I; |
| 692 | I lb = std::lower_bound(first: u.begin(), last: u.end(), val: b[i]); |
| 693 | I ub = std::lower_bound(first: u.begin(), last: u.end(), val: b[i+1]); |
| 694 | const std::size_t Ni = ub - lb; |
| 695 | if (prob[i] == 0) |
| 696 | assert(Ni == 0); |
| 697 | else |
| 698 | { |
| 699 | assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01); |
| 700 | double mean = std::accumulate(first: lb, last: ub, init: 0.0) / Ni; |
| 701 | double var = 0; |
| 702 | double skew = 0; |
| 703 | double kurtosis = 0; |
| 704 | for (I j = lb; j != ub; ++j) |
| 705 | { |
| 706 | double dbl = (*j - mean); |
| 707 | double d2 = sqr(x: dbl); |
| 708 | var += d2; |
| 709 | skew += dbl * d2; |
| 710 | kurtosis += d2 * d2; |
| 711 | } |
| 712 | var /= Ni; |
| 713 | double dev = std::sqrt(x: var); |
| 714 | skew /= Ni * dev * var; |
| 715 | kurtosis /= Ni * var * var; |
| 716 | kurtosis -= 3; |
| 717 | double x_mean = (b[i+1] + b[i]) / 2; |
| 718 | double x_var = sqr(x: b[i+1] - b[i]) / 12; |
| 719 | double x_skew = 0; |
| 720 | double x_kurtosis = -6./5; |
| 721 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 722 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 723 | assert(std::abs(skew - x_skew) < 0.01); |
| 724 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | int main(int, char**) |
| 730 | { |
| 731 | test1(); |
| 732 | test2(); |
| 733 | test3(); |
| 734 | test4(); |
| 735 | test5(); |
| 736 | test6(); |
| 737 | test7(); |
| 738 | test8(); |
| 739 | test9(); |
| 740 | test10(); |
| 741 | test11(); |
| 742 | |
| 743 | return 0; |
| 744 | } |
| 745 | |