| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class weibull_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <cstddef> |
| 22 | #include <numeric> |
| 23 | #include <vector> |
| 24 | |
| 25 | #include "test_macros.h" |
| 26 | |
| 27 | template <class T> |
| 28 | inline |
| 29 | T |
| 30 | sqr(T x) |
| 31 | { |
| 32 | return x * x; |
| 33 | } |
| 34 | |
| 35 | int main(int, char**) |
| 36 | { |
| 37 | { |
| 38 | typedef std::weibull_distribution<> D; |
| 39 | typedef D::param_type P; |
| 40 | typedef std::mt19937 G; |
| 41 | G g; |
| 42 | D d(0.5, 2); |
| 43 | P p(1, .5); |
| 44 | const int N = 1000000; |
| 45 | std::vector<D::result_type> u; |
| 46 | for (int i = 0; i < N; ++i) |
| 47 | { |
| 48 | D::result_type v = d(g, p); |
| 49 | assert(d.min() <= v); |
| 50 | u.push_back(x: v); |
| 51 | } |
| 52 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 53 | double var = 0; |
| 54 | double skew = 0; |
| 55 | double kurtosis = 0; |
| 56 | for (std::size_t i = 0; i < u.size(); ++i) |
| 57 | { |
| 58 | double dbl = (u[i] - mean); |
| 59 | double d2 = sqr(dbl); |
| 60 | var += d2; |
| 61 | skew += dbl * d2; |
| 62 | kurtosis += d2 * d2; |
| 63 | } |
| 64 | var /= u.size(); |
| 65 | double dev = std::sqrt(x: var); |
| 66 | skew /= u.size() * dev * var; |
| 67 | kurtosis /= u.size() * var * var; |
| 68 | kurtosis -= 3; |
| 69 | double x_mean = p.b() * std::tgamma(1 + 1/p.a()); |
| 70 | double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean); |
| 71 | double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) - |
| 72 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 73 | (std::sqrt(x: x_var)*x_var); |
| 74 | double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) - |
| 75 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 76 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 77 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 78 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 79 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 80 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 81 | } |
| 82 | { |
| 83 | typedef std::weibull_distribution<> D; |
| 84 | typedef D::param_type P; |
| 85 | typedef std::mt19937 G; |
| 86 | G g; |
| 87 | D d(1, .5); |
| 88 | P p(2, 3); |
| 89 | const int N = 1000000; |
| 90 | std::vector<D::result_type> u; |
| 91 | for (int i = 0; i < N; ++i) |
| 92 | { |
| 93 | D::result_type v = d(g, p); |
| 94 | assert(d.min() <= v); |
| 95 | u.push_back(v); |
| 96 | } |
| 97 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 98 | double var = 0; |
| 99 | double skew = 0; |
| 100 | double kurtosis = 0; |
| 101 | for (std::size_t i = 0; i < u.size(); ++i) |
| 102 | { |
| 103 | double dbl = (u[i] - mean); |
| 104 | double d2 = sqr(dbl); |
| 105 | var += d2; |
| 106 | skew += dbl * d2; |
| 107 | kurtosis += d2 * d2; |
| 108 | } |
| 109 | var /= u.size(); |
| 110 | double dev = std::sqrt(x: var); |
| 111 | skew /= u.size() * dev * var; |
| 112 | kurtosis /= u.size() * var * var; |
| 113 | kurtosis -= 3; |
| 114 | double x_mean = p.b() * std::tgamma(1 + 1/p.a()); |
| 115 | double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean); |
| 116 | double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) - |
| 117 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 118 | (std::sqrt(x: x_var)*x_var); |
| 119 | double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) - |
| 120 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 121 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 122 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 123 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 124 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 125 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 126 | } |
| 127 | { |
| 128 | typedef std::weibull_distribution<> D; |
| 129 | typedef D::param_type P; |
| 130 | typedef std::mt19937 G; |
| 131 | G g; |
| 132 | D d(2, 3); |
| 133 | P p(.5, 2); |
| 134 | const int N = 1000000; |
| 135 | std::vector<D::result_type> u; |
| 136 | for (int i = 0; i < N; ++i) |
| 137 | { |
| 138 | D::result_type v = d(g, p); |
| 139 | assert(d.min() <= v); |
| 140 | u.push_back(v); |
| 141 | } |
| 142 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 143 | double var = 0; |
| 144 | double skew = 0; |
| 145 | double kurtosis = 0; |
| 146 | for (std::size_t i = 0; i < u.size(); ++i) |
| 147 | { |
| 148 | double dbl = (u[i] - mean); |
| 149 | double d2 = sqr(dbl); |
| 150 | var += d2; |
| 151 | skew += dbl * d2; |
| 152 | kurtosis += d2 * d2; |
| 153 | } |
| 154 | var /= u.size(); |
| 155 | double dev = std::sqrt(x: var); |
| 156 | skew /= u.size() * dev * var; |
| 157 | kurtosis /= u.size() * var * var; |
| 158 | kurtosis -= 3; |
| 159 | double x_mean = p.b() * std::tgamma(1 + 1/p.a()); |
| 160 | double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean); |
| 161 | double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) - |
| 162 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 163 | (std::sqrt(x: x_var)*x_var); |
| 164 | double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) - |
| 165 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 166 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 167 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 168 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 169 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 170 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |