| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class weibull_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <cstddef> |
| 22 | #include <numeric> |
| 23 | #include <vector> |
| 24 | |
| 25 | #include "test_macros.h" |
| 26 | |
| 27 | template <class T> |
| 28 | inline |
| 29 | T |
| 30 | sqr(T x) |
| 31 | { |
| 32 | return x * x; |
| 33 | } |
| 34 | |
| 35 | int main(int, char**) |
| 36 | { |
| 37 | { |
| 38 | typedef std::weibull_distribution<> D; |
| 39 | typedef std::mt19937 G; |
| 40 | G g; |
| 41 | D d(0.5, 2); |
| 42 | const int N = 1000000; |
| 43 | std::vector<D::result_type> u; |
| 44 | for (int i = 0; i < N; ++i) |
| 45 | { |
| 46 | D::result_type v = d(g); |
| 47 | assert(d.min() <= v); |
| 48 | u.push_back(x: v); |
| 49 | } |
| 50 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 51 | double var = 0; |
| 52 | double skew = 0; |
| 53 | double kurtosis = 0; |
| 54 | for (std::size_t i = 0; i < u.size(); ++i) |
| 55 | { |
| 56 | double dbl = (u[i] - mean); |
| 57 | double d2 = sqr(dbl); |
| 58 | var += d2; |
| 59 | skew += dbl * d2; |
| 60 | kurtosis += d2 * d2; |
| 61 | } |
| 62 | var /= u.size(); |
| 63 | double dev = std::sqrt(x: var); |
| 64 | skew /= u.size() * dev * var; |
| 65 | kurtosis /= u.size() * var * var; |
| 66 | kurtosis -= 3; |
| 67 | double x_mean = d.b() * std::tgamma(1 + 1/d.a()); |
| 68 | double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean); |
| 69 | double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) - |
| 70 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 71 | (std::sqrt(x: x_var)*x_var); |
| 72 | double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) - |
| 73 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 74 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 75 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 76 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 77 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 78 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 79 | } |
| 80 | { |
| 81 | typedef std::weibull_distribution<> D; |
| 82 | typedef std::mt19937 G; |
| 83 | G g; |
| 84 | D d(1, .5); |
| 85 | const int N = 1000000; |
| 86 | std::vector<D::result_type> u; |
| 87 | for (int i = 0; i < N; ++i) |
| 88 | { |
| 89 | D::result_type v = d(g); |
| 90 | assert(d.min() <= v); |
| 91 | u.push_back(v); |
| 92 | } |
| 93 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 94 | double var = 0; |
| 95 | double skew = 0; |
| 96 | double kurtosis = 0; |
| 97 | for (std::size_t i = 0; i < u.size(); ++i) |
| 98 | { |
| 99 | double dbl = (u[i] - mean); |
| 100 | double d2 = sqr(dbl); |
| 101 | var += d2; |
| 102 | skew += dbl * d2; |
| 103 | kurtosis += d2 * d2; |
| 104 | } |
| 105 | var /= u.size(); |
| 106 | double dev = std::sqrt(x: var); |
| 107 | skew /= u.size() * dev * var; |
| 108 | kurtosis /= u.size() * var * var; |
| 109 | kurtosis -= 3; |
| 110 | double x_mean = d.b() * std::tgamma(1 + 1/d.a()); |
| 111 | double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean); |
| 112 | double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) - |
| 113 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 114 | (std::sqrt(x: x_var)*x_var); |
| 115 | double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) - |
| 116 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 117 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 118 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 119 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 120 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 121 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); |
| 122 | } |
| 123 | { |
| 124 | typedef std::weibull_distribution<> D; |
| 125 | typedef std::mt19937 G; |
| 126 | G g; |
| 127 | D d(2, 3); |
| 128 | const int N = 1000000; |
| 129 | std::vector<D::result_type> u; |
| 130 | for (int i = 0; i < N; ++i) |
| 131 | { |
| 132 | D::result_type v = d(g); |
| 133 | assert(d.min() <= v); |
| 134 | u.push_back(v); |
| 135 | } |
| 136 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 137 | double var = 0; |
| 138 | double skew = 0; |
| 139 | double kurtosis = 0; |
| 140 | for (std::size_t i = 0; i < u.size(); ++i) |
| 141 | { |
| 142 | double dbl = (u[i] - mean); |
| 143 | double d2 = sqr(dbl); |
| 144 | var += d2; |
| 145 | skew += dbl * d2; |
| 146 | kurtosis += d2 * d2; |
| 147 | } |
| 148 | var /= u.size(); |
| 149 | double dev = std::sqrt(x: var); |
| 150 | skew /= u.size() * dev * var; |
| 151 | kurtosis /= u.size() * var * var; |
| 152 | kurtosis -= 3; |
| 153 | double x_mean = d.b() * std::tgamma(1 + 1/d.a()); |
| 154 | double x_var = sqr(d.b()) * std::tgamma(1 + 2/d.a()) - sqr(x_mean); |
| 155 | double x_skew = (sqr(d.b())*d.b() * std::tgamma(1 + 3/d.a()) - |
| 156 | 3*x_mean*x_var - sqr(x_mean)*x_mean) / |
| 157 | (std::sqrt(x: x_var)*x_var); |
| 158 | double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) - |
| 159 | 4*x_skew*x_var*sqrt(x: x_var)*x_mean - |
| 160 | 6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3; |
| 161 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 162 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 163 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 164 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 165 | } |
| 166 | |
| 167 | return 0; |
| 168 | } |
| 169 | |