| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class extreme_value_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <numeric> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "test_macros.h" |
| 25 | |
| 26 | template <class T> |
| 27 | inline |
| 28 | T |
| 29 | sqr(T x) |
| 30 | { |
| 31 | return x * x; |
| 32 | } |
| 33 | |
| 34 | void |
| 35 | test1() |
| 36 | { |
| 37 | typedef std::extreme_value_distribution<> D; |
| 38 | typedef D::param_type P; |
| 39 | typedef std::mt19937 G; |
| 40 | G g; |
| 41 | D d(-0.5, 1); |
| 42 | P p(0.5, 2); |
| 43 | const int N = 1000000; |
| 44 | std::vector<D::result_type> u; |
| 45 | for (int i = 0; i < N; ++i) |
| 46 | { |
| 47 | D::result_type v = d(g, p); |
| 48 | u.push_back(x: v); |
| 49 | } |
| 50 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 51 | double var = 0; |
| 52 | double skew = 0; |
| 53 | double kurtosis = 0; |
| 54 | for (unsigned i = 0; i < u.size(); ++i) |
| 55 | { |
| 56 | double dbl = (u[i] - mean); |
| 57 | double d2 = sqr(dbl); |
| 58 | var += d2; |
| 59 | skew += dbl * d2; |
| 60 | kurtosis += d2 * d2; |
| 61 | } |
| 62 | var /= u.size(); |
| 63 | double dev = std::sqrt(x: var); |
| 64 | skew /= u.size() * dev * var; |
| 65 | kurtosis /= u.size() * var * var; |
| 66 | kurtosis -= 3; |
| 67 | double x_mean = p.a() + p.b() * 0.577215665; |
| 68 | double x_var = sqr(p.b()) * 1.644934067; |
| 69 | double x_skew = 1.139547; |
| 70 | double x_kurtosis = 12./5; |
| 71 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 72 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 73 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 74 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 75 | } |
| 76 | |
| 77 | void |
| 78 | test2() |
| 79 | { |
| 80 | typedef std::extreme_value_distribution<> D; |
| 81 | typedef D::param_type P; |
| 82 | typedef std::mt19937 G; |
| 83 | G g; |
| 84 | D d(-0.5, 1); |
| 85 | P p(1, 2); |
| 86 | const int N = 1000000; |
| 87 | std::vector<D::result_type> u; |
| 88 | for (int i = 0; i < N; ++i) |
| 89 | { |
| 90 | D::result_type v = d(g, p); |
| 91 | u.push_back(x: v); |
| 92 | } |
| 93 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 94 | double var = 0; |
| 95 | double skew = 0; |
| 96 | double kurtosis = 0; |
| 97 | for (unsigned i = 0; i < u.size(); ++i) |
| 98 | { |
| 99 | double dbl = (u[i] - mean); |
| 100 | double d2 = sqr(x: dbl); |
| 101 | var += d2; |
| 102 | skew += dbl * d2; |
| 103 | kurtosis += d2 * d2; |
| 104 | } |
| 105 | var /= u.size(); |
| 106 | double dev = std::sqrt(x: var); |
| 107 | skew /= u.size() * dev * var; |
| 108 | kurtosis /= u.size() * var * var; |
| 109 | kurtosis -= 3; |
| 110 | double x_mean = p.a() + p.b() * 0.577215665; |
| 111 | double x_var = sqr(x: p.b()) * 1.644934067; |
| 112 | double x_skew = 1.139547; |
| 113 | double x_kurtosis = 12./5; |
| 114 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 115 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 116 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 117 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 118 | } |
| 119 | |
| 120 | void |
| 121 | test3() |
| 122 | { |
| 123 | typedef std::extreme_value_distribution<> D; |
| 124 | typedef D::param_type P; |
| 125 | typedef std::mt19937 G; |
| 126 | G g; |
| 127 | D d(-0.5, 1); |
| 128 | P p(1.5, 3); |
| 129 | const int N = 1000000; |
| 130 | std::vector<D::result_type> u; |
| 131 | for (int i = 0; i < N; ++i) |
| 132 | { |
| 133 | D::result_type v = d(g, p); |
| 134 | u.push_back(x: v); |
| 135 | } |
| 136 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 137 | double var = 0; |
| 138 | double skew = 0; |
| 139 | double kurtosis = 0; |
| 140 | for (unsigned i = 0; i < u.size(); ++i) |
| 141 | { |
| 142 | double dbl = (u[i] - mean); |
| 143 | double d2 = sqr(x: dbl); |
| 144 | var += d2; |
| 145 | skew += dbl * d2; |
| 146 | kurtosis += d2 * d2; |
| 147 | } |
| 148 | var /= u.size(); |
| 149 | double dev = std::sqrt(x: var); |
| 150 | skew /= u.size() * dev * var; |
| 151 | kurtosis /= u.size() * var * var; |
| 152 | kurtosis -= 3; |
| 153 | double x_mean = p.a() + p.b() * 0.577215665; |
| 154 | double x_var = sqr(x: p.b()) * 1.644934067; |
| 155 | double x_skew = 1.139547; |
| 156 | double x_kurtosis = 12./5; |
| 157 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 158 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 159 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 160 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 161 | } |
| 162 | |
| 163 | void |
| 164 | test4() |
| 165 | { |
| 166 | typedef std::extreme_value_distribution<> D; |
| 167 | typedef D::param_type P; |
| 168 | typedef std::mt19937 G; |
| 169 | G g; |
| 170 | D d(-0.5, 1); |
| 171 | P p(3, 4); |
| 172 | const int N = 1000000; |
| 173 | std::vector<D::result_type> u; |
| 174 | for (int i = 0; i < N; ++i) |
| 175 | { |
| 176 | D::result_type v = d(g, p); |
| 177 | u.push_back(x: v); |
| 178 | } |
| 179 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 180 | double var = 0; |
| 181 | double skew = 0; |
| 182 | double kurtosis = 0; |
| 183 | for (unsigned i = 0; i < u.size(); ++i) |
| 184 | { |
| 185 | double dbl = (u[i] - mean); |
| 186 | double d2 = sqr(x: dbl); |
| 187 | var += d2; |
| 188 | skew += dbl * d2; |
| 189 | kurtosis += d2 * d2; |
| 190 | } |
| 191 | var /= u.size(); |
| 192 | double dev = std::sqrt(x: var); |
| 193 | skew /= u.size() * dev * var; |
| 194 | kurtosis /= u.size() * var * var; |
| 195 | kurtosis -= 3; |
| 196 | double x_mean = p.a() + p.b() * 0.577215665; |
| 197 | double x_var = sqr(x: p.b()) * 1.644934067; |
| 198 | double x_skew = 1.139547; |
| 199 | double x_kurtosis = 12./5; |
| 200 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 201 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 202 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 203 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 204 | } |
| 205 | |
| 206 | int main(int, char**) |
| 207 | { |
| 208 | test1(); |
| 209 | test2(); |
| 210 | test3(); |
| 211 | test4(); |
| 212 | |
| 213 | return 0; |
| 214 | } |
| 215 | |