| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class extreme_value_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <numeric> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "test_macros.h" |
| 25 | |
| 26 | template <class T> |
| 27 | inline |
| 28 | T |
| 29 | sqr(T x) |
| 30 | { |
| 31 | return x * x; |
| 32 | } |
| 33 | |
| 34 | void |
| 35 | test1() |
| 36 | { |
| 37 | typedef std::extreme_value_distribution<> D; |
| 38 | typedef std::mt19937 G; |
| 39 | G g; |
| 40 | D d(0.5, 2); |
| 41 | const int N = 1000000; |
| 42 | std::vector<D::result_type> u; |
| 43 | for (int i = 0; i < N; ++i) |
| 44 | { |
| 45 | D::result_type v = d(g); |
| 46 | u.push_back(x: v); |
| 47 | } |
| 48 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 49 | double var = 0; |
| 50 | double skew = 0; |
| 51 | double kurtosis = 0; |
| 52 | for (unsigned i = 0; i < u.size(); ++i) |
| 53 | { |
| 54 | double dbl = (u[i] - mean); |
| 55 | double d2 = sqr(dbl); |
| 56 | var += d2; |
| 57 | skew += dbl * d2; |
| 58 | kurtosis += d2 * d2; |
| 59 | } |
| 60 | var /= u.size(); |
| 61 | double dev = std::sqrt(x: var); |
| 62 | skew /= u.size() * dev * var; |
| 63 | kurtosis /= u.size() * var * var; |
| 64 | kurtosis -= 3; |
| 65 | double x_mean = d.a() + d.b() * 0.577215665; |
| 66 | double x_var = sqr(d.b()) * 1.644934067; |
| 67 | double x_skew = 1.139547; |
| 68 | double x_kurtosis = 12./5; |
| 69 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 70 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 71 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 72 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 73 | } |
| 74 | |
| 75 | void |
| 76 | test2() |
| 77 | { |
| 78 | typedef std::extreme_value_distribution<> D; |
| 79 | typedef std::mt19937 G; |
| 80 | G g; |
| 81 | D d(1, 2); |
| 82 | const int N = 1000000; |
| 83 | std::vector<D::result_type> u; |
| 84 | for (int i = 0; i < N; ++i) |
| 85 | { |
| 86 | D::result_type v = d(g); |
| 87 | u.push_back(x: v); |
| 88 | } |
| 89 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 90 | double var = 0; |
| 91 | double skew = 0; |
| 92 | double kurtosis = 0; |
| 93 | for (unsigned i = 0; i < u.size(); ++i) |
| 94 | { |
| 95 | double dbl = (u[i] - mean); |
| 96 | double d2 = sqr(x: dbl); |
| 97 | var += d2; |
| 98 | skew += dbl * d2; |
| 99 | kurtosis += d2 * d2; |
| 100 | } |
| 101 | var /= u.size(); |
| 102 | double dev = std::sqrt(x: var); |
| 103 | skew /= u.size() * dev * var; |
| 104 | kurtosis /= u.size() * var * var; |
| 105 | kurtosis -= 3; |
| 106 | double x_mean = d.a() + d.b() * 0.577215665; |
| 107 | double x_var = sqr(x: d.b()) * 1.644934067; |
| 108 | double x_skew = 1.139547; |
| 109 | double x_kurtosis = 12./5; |
| 110 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 111 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 112 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 113 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 114 | } |
| 115 | |
| 116 | void |
| 117 | test3() |
| 118 | { |
| 119 | typedef std::extreme_value_distribution<> D; |
| 120 | typedef std::mt19937 G; |
| 121 | G g; |
| 122 | D d(1.5, 3); |
| 123 | const int N = 1000000; |
| 124 | std::vector<D::result_type> u; |
| 125 | for (int i = 0; i < N; ++i) |
| 126 | { |
| 127 | D::result_type v = d(g); |
| 128 | u.push_back(x: v); |
| 129 | } |
| 130 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 131 | double var = 0; |
| 132 | double skew = 0; |
| 133 | double kurtosis = 0; |
| 134 | for (unsigned i = 0; i < u.size(); ++i) |
| 135 | { |
| 136 | double dbl = (u[i] - mean); |
| 137 | double d2 = sqr(x: dbl); |
| 138 | var += d2; |
| 139 | skew += dbl * d2; |
| 140 | kurtosis += d2 * d2; |
| 141 | } |
| 142 | var /= u.size(); |
| 143 | double dev = std::sqrt(x: var); |
| 144 | skew /= u.size() * dev * var; |
| 145 | kurtosis /= u.size() * var * var; |
| 146 | kurtosis -= 3; |
| 147 | double x_mean = d.a() + d.b() * 0.577215665; |
| 148 | double x_var = sqr(x: d.b()) * 1.644934067; |
| 149 | double x_skew = 1.139547; |
| 150 | double x_kurtosis = 12./5; |
| 151 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 152 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 153 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 154 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 155 | } |
| 156 | |
| 157 | void |
| 158 | test4() |
| 159 | { |
| 160 | typedef std::extreme_value_distribution<> D; |
| 161 | typedef std::mt19937 G; |
| 162 | G g; |
| 163 | D d(3, 4); |
| 164 | const int N = 1000000; |
| 165 | std::vector<D::result_type> u; |
| 166 | for (int i = 0; i < N; ++i) |
| 167 | { |
| 168 | D::result_type v = d(g); |
| 169 | u.push_back(x: v); |
| 170 | } |
| 171 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 172 | double var = 0; |
| 173 | double skew = 0; |
| 174 | double kurtosis = 0; |
| 175 | for (unsigned i = 0; i < u.size(); ++i) |
| 176 | { |
| 177 | double dbl = (u[i] - mean); |
| 178 | double d2 = sqr(x: dbl); |
| 179 | var += d2; |
| 180 | skew += dbl * d2; |
| 181 | kurtosis += d2 * d2; |
| 182 | } |
| 183 | var /= u.size(); |
| 184 | double dev = std::sqrt(x: var); |
| 185 | skew /= u.size() * dev * var; |
| 186 | kurtosis /= u.size() * var * var; |
| 187 | kurtosis -= 3; |
| 188 | double x_mean = d.a() + d.b() * 0.577215665; |
| 189 | double x_var = sqr(x: d.b()) * 1.644934067; |
| 190 | double x_skew = 1.139547; |
| 191 | double x_kurtosis = 12./5; |
| 192 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 193 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 194 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 195 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 196 | } |
| 197 | |
| 198 | int main(int, char**) |
| 199 | { |
| 200 | test1(); |
| 201 | test2(); |
| 202 | test3(); |
| 203 | test4(); |
| 204 | |
| 205 | return 0; |
| 206 | } |
| 207 | |