| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // <random> |
| 12 | |
| 13 | // template<class RealType = double> |
| 14 | // class lognormal_distribution |
| 15 | |
| 16 | // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); |
| 17 | |
| 18 | #include <random> |
| 19 | #include <cassert> |
| 20 | #include <cmath> |
| 21 | #include <numeric> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "test_macros.h" |
| 25 | |
| 26 | template <class T> |
| 27 | inline |
| 28 | T |
| 29 | sqr(T x) |
| 30 | { |
| 31 | return x * x; |
| 32 | } |
| 33 | |
| 34 | void |
| 35 | test1() |
| 36 | { |
| 37 | typedef std::lognormal_distribution<> D; |
| 38 | typedef D::param_type P; |
| 39 | typedef std::mt19937 G; |
| 40 | G g; |
| 41 | D d; |
| 42 | P p(-1./8192, 0.015625); |
| 43 | const int N = 1000000; |
| 44 | std::vector<D::result_type> u; |
| 45 | for (int i = 0; i < N; ++i) |
| 46 | { |
| 47 | D::result_type v = d(g, p); |
| 48 | assert(v > 0); |
| 49 | u.push_back(v); |
| 50 | } |
| 51 | double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size(); |
| 52 | double var = 0; |
| 53 | double skew = 0; |
| 54 | double kurtosis = 0; |
| 55 | for (unsigned i = 0; i < u.size(); ++i) |
| 56 | { |
| 57 | double dbl = (u[i] - mean); |
| 58 | double d2 = sqr(dbl); |
| 59 | var += d2; |
| 60 | skew += dbl * d2; |
| 61 | kurtosis += d2 * d2; |
| 62 | } |
| 63 | var /= u.size(); |
| 64 | double dev = std::sqrt(x: var); |
| 65 | skew /= u.size() * dev * var; |
| 66 | kurtosis /= u.size() * var * var; |
| 67 | kurtosis -= 3; |
| 68 | double x_mean = std::exp(p.m() + sqr(p.s())/2); |
| 69 | double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s())); |
| 70 | double x_skew = (std::exp(sqr(p.s())) + 2) * |
| 71 | std::sqrt((std::exp(sqr(p.s())) - 1)); |
| 72 | double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) + |
| 73 | 3*std::exp(2*sqr(p.s())) - 6; |
| 74 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 75 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 76 | assert(std::abs((skew - x_skew) / x_skew) < 0.1); |
| 77 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 1.9); |
| 78 | } |
| 79 | |
| 80 | void |
| 81 | test2() |
| 82 | { |
| 83 | typedef std::lognormal_distribution<> D; |
| 84 | typedef D::param_type P; |
| 85 | typedef std::mt19937 G; |
| 86 | G g; |
| 87 | D d; |
| 88 | P p(-1./32, 0.25); |
| 89 | const int N = 1000000; |
| 90 | std::vector<D::result_type> u; |
| 91 | for (int i = 0; i < N; ++i) |
| 92 | { |
| 93 | D::result_type v = d(g, p); |
| 94 | assert(v > 0); |
| 95 | u.push_back(x: v); |
| 96 | } |
| 97 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 98 | double var = 0; |
| 99 | double skew = 0; |
| 100 | double kurtosis = 0; |
| 101 | for (unsigned i = 0; i < u.size(); ++i) |
| 102 | { |
| 103 | double dbl = (u[i] - mean); |
| 104 | double d2 = sqr(x: dbl); |
| 105 | var += d2; |
| 106 | skew += dbl * d2; |
| 107 | kurtosis += d2 * d2; |
| 108 | } |
| 109 | var /= u.size(); |
| 110 | double dev = std::sqrt(x: var); |
| 111 | skew /= u.size() * dev * var; |
| 112 | kurtosis /= u.size() * var * var; |
| 113 | kurtosis -= 3; |
| 114 | double x_mean = std::exp(x: p.m() + sqr(x: p.s())/2); |
| 115 | double x_var = (std::exp(x: sqr(x: p.s())) - 1) * std::exp(x: 2*p.m() + sqr(x: p.s())); |
| 116 | double x_skew = (std::exp(x: sqr(x: p.s())) + 2) * |
| 117 | std::sqrt(x: (std::exp(x: sqr(x: p.s())) - 1)); |
| 118 | double x_kurtosis = std::exp(x: 4*sqr(x: p.s())) + 2*std::exp(x: 3*sqr(x: p.s())) + |
| 119 | 3*std::exp(x: 2*sqr(x: p.s())) - 6; |
| 120 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 121 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 122 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 123 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04); |
| 124 | } |
| 125 | |
| 126 | void |
| 127 | test3() |
| 128 | { |
| 129 | typedef std::lognormal_distribution<> D; |
| 130 | typedef D::param_type P; |
| 131 | typedef std::mt19937 G; |
| 132 | G g; |
| 133 | D d; |
| 134 | P p(-1./8, 0.5); |
| 135 | const int N = 1000000; |
| 136 | std::vector<D::result_type> u; |
| 137 | for (int i = 0; i < N; ++i) |
| 138 | { |
| 139 | D::result_type v = d(g, p); |
| 140 | assert(v > 0); |
| 141 | u.push_back(x: v); |
| 142 | } |
| 143 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 144 | double var = 0; |
| 145 | double skew = 0; |
| 146 | double kurtosis = 0; |
| 147 | for (unsigned i = 0; i < u.size(); ++i) |
| 148 | { |
| 149 | double dbl = (u[i] - mean); |
| 150 | double d2 = sqr(x: dbl); |
| 151 | var += d2; |
| 152 | skew += dbl * d2; |
| 153 | kurtosis += d2 * d2; |
| 154 | } |
| 155 | var /= u.size(); |
| 156 | double dev = std::sqrt(x: var); |
| 157 | skew /= u.size() * dev * var; |
| 158 | kurtosis /= u.size() * var * var; |
| 159 | kurtosis -= 3; |
| 160 | double x_mean = std::exp(x: p.m() + sqr(x: p.s())/2); |
| 161 | double x_var = (std::exp(x: sqr(x: p.s())) - 1) * std::exp(x: 2*p.m() + sqr(x: p.s())); |
| 162 | double x_skew = (std::exp(x: sqr(x: p.s())) + 2) * |
| 163 | std::sqrt(x: (std::exp(x: sqr(x: p.s())) - 1)); |
| 164 | double x_kurtosis = std::exp(x: 4*sqr(x: p.s())) + 2*std::exp(x: 3*sqr(x: p.s())) + |
| 165 | 3*std::exp(x: 2*sqr(x: p.s())) - 6; |
| 166 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 167 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 168 | assert(std::abs((skew - x_skew) / x_skew) < 0.02); |
| 169 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.06); |
| 170 | } |
| 171 | |
| 172 | void |
| 173 | test4() |
| 174 | { |
| 175 | typedef std::lognormal_distribution<> D; |
| 176 | typedef D::param_type P; |
| 177 | typedef std::mt19937 G; |
| 178 | G g; |
| 179 | D d(3, 4); |
| 180 | P p; |
| 181 | const int N = 1000000; |
| 182 | std::vector<D::result_type> u; |
| 183 | for (int i = 0; i < N; ++i) |
| 184 | { |
| 185 | D::result_type v = d(g, p); |
| 186 | assert(v > 0); |
| 187 | u.push_back(x: v); |
| 188 | } |
| 189 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 190 | double var = 0; |
| 191 | double skew = 0; |
| 192 | double kurtosis = 0; |
| 193 | for (unsigned i = 0; i < u.size(); ++i) |
| 194 | { |
| 195 | double dbl = (u[i] - mean); |
| 196 | double d2 = sqr(x: dbl); |
| 197 | var += d2; |
| 198 | skew += dbl * d2; |
| 199 | kurtosis += d2 * d2; |
| 200 | } |
| 201 | var /= u.size(); |
| 202 | double dev = std::sqrt(x: var); |
| 203 | skew /= u.size() * dev * var; |
| 204 | kurtosis /= u.size() * var * var; |
| 205 | kurtosis -= 3; |
| 206 | double x_mean = std::exp(x: p.m() + sqr(x: p.s())/2); |
| 207 | double x_var = (std::exp(x: sqr(x: p.s())) - 1) * std::exp(x: 2*p.m() + sqr(x: p.s())); |
| 208 | double x_skew = (std::exp(x: sqr(x: p.s())) + 2) * |
| 209 | std::sqrt(x: (std::exp(x: sqr(x: p.s())) - 1)); |
| 210 | double x_kurtosis = std::exp(x: 4*sqr(x: p.s())) + 2*std::exp(x: 3*sqr(x: p.s())) + |
| 211 | 3*std::exp(x: 2*sqr(x: p.s())) - 6; |
| 212 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 213 | assert(std::abs((var - x_var) / x_var) < 0.02); |
| 214 | assert(std::abs((skew - x_skew) / x_skew) < 0.1); |
| 215 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.5); |
| 216 | } |
| 217 | |
| 218 | void |
| 219 | test5() |
| 220 | { |
| 221 | typedef std::lognormal_distribution<> D; |
| 222 | typedef D::param_type P; |
| 223 | typedef std::mt19937 G; |
| 224 | G g; |
| 225 | D d; |
| 226 | P p(-0.78125, 1.25); |
| 227 | const int N = 1000000; |
| 228 | std::vector<D::result_type> u; |
| 229 | for (int i = 0; i < N; ++i) |
| 230 | { |
| 231 | D::result_type v = d(g, p); |
| 232 | assert(v > 0); |
| 233 | u.push_back(x: v); |
| 234 | } |
| 235 | double mean = std::accumulate(first: u.begin(), last: u.end(), init: 0.0) / u.size(); |
| 236 | double var = 0; |
| 237 | double skew = 0; |
| 238 | double kurtosis = 0; |
| 239 | for (unsigned i = 0; i < u.size(); ++i) |
| 240 | { |
| 241 | double dbl = (u[i] - mean); |
| 242 | double d2 = sqr(x: dbl); |
| 243 | var += d2; |
| 244 | skew += dbl * d2; |
| 245 | kurtosis += d2 * d2; |
| 246 | } |
| 247 | var /= u.size(); |
| 248 | double dev = std::sqrt(x: var); |
| 249 | skew /= u.size() * dev * var; |
| 250 | kurtosis /= u.size() * var * var; |
| 251 | kurtosis -= 3; |
| 252 | double x_mean = std::exp(x: p.m() + sqr(x: p.s())/2); |
| 253 | double x_var = (std::exp(x: sqr(x: p.s())) - 1) * std::exp(x: 2*p.m() + sqr(x: p.s())); |
| 254 | double x_skew = (std::exp(x: sqr(x: p.s())) + 2) * |
| 255 | std::sqrt(x: (std::exp(x: sqr(x: p.s())) - 1)); |
| 256 | double x_kurtosis = std::exp(x: 4*sqr(x: p.s())) + 2*std::exp(x: 3*sqr(x: p.s())) + |
| 257 | 3*std::exp(x: 2*sqr(x: p.s())) - 6; |
| 258 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 259 | assert(std::abs((var - x_var) / x_var) < 0.05); |
| 260 | assert(std::abs((skew - x_skew) / x_skew) < 0.3); |
| 261 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 1.0); |
| 262 | } |
| 263 | |
| 264 | int main(int, char**) |
| 265 | { |
| 266 | test1(); |
| 267 | test2(); |
| 268 | test3(); |
| 269 | test4(); |
| 270 | test5(); |
| 271 | |
| 272 | return 0; |
| 273 | } |
| 274 | |