| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // REQUIRES: long_tests |
| 10 | |
| 11 | // This test is super slow, in particular with msan or tsan. In order to avoid timeouts and to |
| 12 | // spend less time waiting for this particular test to complete we compile with optimizations. |
| 13 | // ADDITIONAL_COMPILE_FLAGS(msan): -O1 |
| 14 | // ADDITIONAL_COMPILE_FLAGS(tsan): -O1 |
| 15 | |
| 16 | // FIXME: This and other tests fail under GCC with optimizations enabled. |
| 17 | // More investigation is needed, but it appears that GCC is performing more constant folding. |
| 18 | |
| 19 | // <random> |
| 20 | |
| 21 | // template<class IntType = int> |
| 22 | // class negative_binomial_distribution |
| 23 | |
| 24 | // template<class _URNG> result_type operator()(_URNG& g); |
| 25 | |
| 26 | #include <random> |
| 27 | #include <cassert> |
| 28 | #include <cmath> |
| 29 | #include <numeric> |
| 30 | #include <vector> |
| 31 | |
| 32 | #include "test_macros.h" |
| 33 | |
| 34 | template <class T> |
| 35 | T sqr(T x) { |
| 36 | return x * x; |
| 37 | } |
| 38 | |
| 39 | template <class T> |
| 40 | void test1() { |
| 41 | typedef std::negative_binomial_distribution<T> D; |
| 42 | typedef std::minstd_rand G; |
| 43 | G g; |
| 44 | D d(5, .25); |
| 45 | const int N = 1000000; |
| 46 | std::vector<typename D::result_type> u; |
| 47 | for (int i = 0; i < N; ++i) |
| 48 | { |
| 49 | typename D::result_type v = d(g); |
| 50 | assert(d.min() <= v && v <= d.max()); |
| 51 | u.push_back(v); |
| 52 | } |
| 53 | double mean = std::accumulate(u.begin(), u.end(), |
| 54 | double(0)) / u.size(); |
| 55 | double var = 0; |
| 56 | double skew = 0; |
| 57 | double kurtosis = 0; |
| 58 | for (unsigned i = 0; i < u.size(); ++i) |
| 59 | { |
| 60 | double dbl = (u[i] - mean); |
| 61 | double d2 = sqr(x: dbl); |
| 62 | var += d2; |
| 63 | skew += dbl * d2; |
| 64 | kurtosis += d2 * d2; |
| 65 | } |
| 66 | var /= u.size(); |
| 67 | double dev = std::sqrt(x: var); |
| 68 | skew /= u.size() * dev * var; |
| 69 | kurtosis /= u.size() * var * var; |
| 70 | kurtosis -= 3; |
| 71 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 72 | double x_var = x_mean / d.p(); |
| 73 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 74 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 75 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 76 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 77 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 78 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 79 | } |
| 80 | |
| 81 | template <class T> |
| 82 | void test2() { |
| 83 | typedef std::negative_binomial_distribution<T> D; |
| 84 | typedef std::mt19937 G; |
| 85 | G g; |
| 86 | D d(30, .03125); |
| 87 | const int N = 1000000; |
| 88 | std::vector<typename D::result_type> u; |
| 89 | for (int i = 0; i < N; ++i) |
| 90 | { |
| 91 | typename D::result_type v = d(g); |
| 92 | assert(d.min() <= v && v <= d.max()); |
| 93 | u.push_back(v); |
| 94 | } |
| 95 | double mean = std::accumulate(u.begin(), u.end(), |
| 96 | double(0)) / u.size(); |
| 97 | double var = 0; |
| 98 | double skew = 0; |
| 99 | double kurtosis = 0; |
| 100 | for (unsigned i = 0; i < u.size(); ++i) |
| 101 | { |
| 102 | double dbl = (u[i] - mean); |
| 103 | double d2 = sqr(x: dbl); |
| 104 | var += d2; |
| 105 | skew += dbl * d2; |
| 106 | kurtosis += d2 * d2; |
| 107 | } |
| 108 | var /= u.size(); |
| 109 | double dev = std::sqrt(x: var); |
| 110 | skew /= u.size() * dev * var; |
| 111 | kurtosis /= u.size() * var * var; |
| 112 | kurtosis -= 3; |
| 113 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 114 | double x_var = x_mean / d.p(); |
| 115 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 116 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 117 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 118 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 119 | assert(std::abs((skew - x_skew) / x_skew) < 0.02); |
| 120 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.1); |
| 121 | } |
| 122 | |
| 123 | template <class T> |
| 124 | void test3() { |
| 125 | typedef std::negative_binomial_distribution<T> D; |
| 126 | typedef std::mt19937 G; |
| 127 | G g; |
| 128 | D d(40, .25); |
| 129 | const int N = 1000000; |
| 130 | std::vector<typename D::result_type> u; |
| 131 | for (int i = 0; i < N; ++i) |
| 132 | { |
| 133 | typename D::result_type v = d(g); |
| 134 | assert(d.min() <= v && v <= d.max()); |
| 135 | u.push_back(v); |
| 136 | } |
| 137 | double mean = std::accumulate(u.begin(), u.end(), |
| 138 | double(0)) / u.size(); |
| 139 | double var = 0; |
| 140 | double skew = 0; |
| 141 | double kurtosis = 0; |
| 142 | for (unsigned i = 0; i < u.size(); ++i) |
| 143 | { |
| 144 | double dbl = (u[i] - mean); |
| 145 | double d2 = sqr(x: dbl); |
| 146 | var += d2; |
| 147 | skew += dbl * d2; |
| 148 | kurtosis += d2 * d2; |
| 149 | } |
| 150 | var /= u.size(); |
| 151 | double dev = std::sqrt(x: var); |
| 152 | skew /= u.size() * dev * var; |
| 153 | kurtosis /= u.size() * var * var; |
| 154 | kurtosis -= 3; |
| 155 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 156 | double x_var = x_mean / d.p(); |
| 157 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 158 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 159 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 160 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 161 | assert(std::abs((skew - x_skew) / x_skew) < 0.02); |
| 162 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.08); |
| 163 | } |
| 164 | |
| 165 | template <class T> |
| 166 | void test4() { |
| 167 | typedef std::negative_binomial_distribution<T> D; |
| 168 | typedef std::mt19937 G; |
| 169 | G g; |
| 170 | D d(40, 1); |
| 171 | const int N = 1000; |
| 172 | std::vector<typename D::result_type> u; |
| 173 | for (int i = 0; i < N; ++i) |
| 174 | { |
| 175 | typename D::result_type v = d(g); |
| 176 | assert(d.min() <= v && v <= d.max()); |
| 177 | u.push_back(v); |
| 178 | } |
| 179 | double mean = std::accumulate(u.begin(), u.end(), |
| 180 | double(0)) / u.size(); |
| 181 | double var = 0; |
| 182 | double skew = 0; |
| 183 | double kurtosis = 0; |
| 184 | for (unsigned i = 0; i < u.size(); ++i) |
| 185 | { |
| 186 | double dbl = (u[i] - mean); |
| 187 | double d2 = sqr(x: dbl); |
| 188 | var += d2; |
| 189 | skew += dbl * d2; |
| 190 | kurtosis += d2 * d2; |
| 191 | } |
| 192 | var /= u.size(); |
| 193 | double dev = std::sqrt(x: var); |
| 194 | skew /= u.size() * dev * var; |
| 195 | kurtosis /= u.size() * var * var; |
| 196 | kurtosis -= 3; |
| 197 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 198 | double x_var = x_mean / d.p(); |
| 199 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 200 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 201 | assert(mean == x_mean); |
| 202 | assert(var == x_var); |
| 203 | // assert(skew == x_skew); |
| 204 | (void)skew; (void)x_skew; |
| 205 | // assert(kurtosis == x_kurtosis); |
| 206 | (void)kurtosis; (void)x_kurtosis; |
| 207 | } |
| 208 | |
| 209 | template <class T> |
| 210 | void test5() { |
| 211 | typedef std::negative_binomial_distribution<T> D; |
| 212 | typedef std::mt19937 G; |
| 213 | G g; |
| 214 | D d(127, 0.5); |
| 215 | const int N = 1000000; |
| 216 | std::vector<typename D::result_type> u; |
| 217 | for (int i = 0; i < N; ++i) |
| 218 | { |
| 219 | typename D::result_type v = d(g); |
| 220 | assert(d.min() <= v && v <= d.max()); |
| 221 | u.push_back(v); |
| 222 | } |
| 223 | double mean = std::accumulate(u.begin(), u.end(), |
| 224 | double(0)) / u.size(); |
| 225 | double var = 0; |
| 226 | double skew = 0; |
| 227 | double kurtosis = 0; |
| 228 | for (unsigned i = 0; i < u.size(); ++i) |
| 229 | { |
| 230 | double dbl = (u[i] - mean); |
| 231 | double d2 = sqr(x: dbl); |
| 232 | var += d2; |
| 233 | skew += dbl * d2; |
| 234 | kurtosis += d2 * d2; |
| 235 | } |
| 236 | var /= u.size(); |
| 237 | double dev = std::sqrt(x: var); |
| 238 | skew /= u.size() * dev * var; |
| 239 | kurtosis /= u.size() * var * var; |
| 240 | kurtosis -= 3; |
| 241 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 242 | double x_var = x_mean / d.p(); |
| 243 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 244 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 245 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 246 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 247 | assert(std::abs((skew - x_skew) / x_skew) < 0.02); |
| 248 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3); |
| 249 | } |
| 250 | |
| 251 | template <class T> |
| 252 | void test6() { |
| 253 | typedef std::negative_binomial_distribution<T> D; |
| 254 | typedef std::mt19937 G; |
| 255 | G g; |
| 256 | D d(1, 0.05); |
| 257 | const int N = 1000000; |
| 258 | std::vector<typename D::result_type> u; |
| 259 | for (int i = 0; i < N; ++i) |
| 260 | { |
| 261 | typename D::result_type v = d(g); |
| 262 | assert(d.min() <= v && v <= d.max()); |
| 263 | u.push_back(v); |
| 264 | } |
| 265 | double mean = std::accumulate(u.begin(), u.end(), |
| 266 | double(0)) / u.size(); |
| 267 | double var = 0; |
| 268 | double skew = 0; |
| 269 | double kurtosis = 0; |
| 270 | for (unsigned i = 0; i < u.size(); ++i) |
| 271 | { |
| 272 | double dbl = (u[i] - mean); |
| 273 | double d2 = sqr(x: dbl); |
| 274 | var += d2; |
| 275 | skew += dbl * d2; |
| 276 | kurtosis += d2 * d2; |
| 277 | } |
| 278 | var /= u.size(); |
| 279 | double dev = std::sqrt(x: var); |
| 280 | skew /= u.size() * dev * var; |
| 281 | kurtosis /= u.size() * var * var; |
| 282 | kurtosis -= 3; |
| 283 | double x_mean = d.k() * (1 - d.p()) / d.p(); |
| 284 | double x_var = x_mean / d.p(); |
| 285 | double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p())); |
| 286 | double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p())); |
| 287 | assert(std::abs((mean - x_mean) / x_mean) < 0.01); |
| 288 | assert(std::abs((var - x_var) / x_var) < 0.01); |
| 289 | assert(std::abs((skew - x_skew) / x_skew) < 0.01); |
| 290 | assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); |
| 291 | } |
| 292 | |
| 293 | template <class T> |
| 294 | void tests() { |
| 295 | test1<T>(); |
| 296 | test2<T>(); |
| 297 | test3<T>(); |
| 298 | test4<T>(); |
| 299 | test5<T>(); |
| 300 | test6<T>(); |
| 301 | } |
| 302 | |
| 303 | int main(int, char**) { |
| 304 | tests<short>(); |
| 305 | tests<int>(); |
| 306 | tests<long>(); |
| 307 | tests<long long>(); |
| 308 | |
| 309 | tests<unsigned short>(); |
| 310 | tests<unsigned int>(); |
| 311 | tests<unsigned long>(); |
| 312 | tests<unsigned long long>(); |
| 313 | |
| 314 | #if defined(_LIBCPP_VERSION) // extension |
| 315 | // TODO: std::negative_binomial_distribution currently doesn't work reliably with small types. |
| 316 | // tests<int8_t>(); |
| 317 | // tests<uint8_t>(); |
| 318 | #if !defined(TEST_HAS_NO_INT128) |
| 319 | tests<__int128_t>(); |
| 320 | tests<__uint128_t>(); |
| 321 | #endif |
| 322 | #endif |
| 323 | |
| 324 | return 0; |
| 325 | } |
| 326 | |