| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | // UNSUPPORTED: c++03, c++11, c++14, c++17 |
| 10 | |
| 11 | // <bit> |
| 12 | // |
| 13 | // template<class To, class From> |
| 14 | // constexpr To bit_cast(const From& from) noexcept; // C++20 |
| 15 | |
| 16 | #include <array> |
| 17 | #include <bit> |
| 18 | #include <cassert> |
| 19 | #include <cmath> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | |
| 24 | #include "test_macros.h" |
| 25 | |
| 26 | // std::bit_cast does not preserve padding bits, so if T has padding bits, |
| 27 | // the results might not memcmp cleanly. |
| 28 | template<bool HasUniqueObjectRepresentations = true, typename T> |
| 29 | void test_roundtrip_through_buffer(T from) { |
| 30 | struct Buffer { char buffer[sizeof(T)]; }; |
| 31 | Buffer middle = std::bit_cast<Buffer>(from); |
| 32 | T to = std::bit_cast<T>(middle); |
| 33 | Buffer middle2 = std::bit_cast<Buffer>(to); |
| 34 | |
| 35 | assert((from == to) == (from == from)); // because NaN |
| 36 | |
| 37 | if constexpr (HasUniqueObjectRepresentations) { |
| 38 | assert(std::memcmp(&from, &middle, sizeof(T)) == 0); |
| 39 | assert(std::memcmp(&to, &middle, sizeof(T)) == 0); |
| 40 | assert(std::memcmp(&middle, &middle2, sizeof(T)) == 0); |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | template<bool HasUniqueObjectRepresentations = true, typename T> |
| 45 | void test_roundtrip_through_nested_T(T from) { |
| 46 | struct Nested { T x; }; |
| 47 | static_assert(sizeof(Nested) == sizeof(T)); |
| 48 | |
| 49 | Nested middle = std::bit_cast<Nested>(from); |
| 50 | T to = std::bit_cast<T>(middle); |
| 51 | Nested middle2 = std::bit_cast<Nested>(to); |
| 52 | |
| 53 | assert((from == to) == (from == from)); // because NaN |
| 54 | |
| 55 | if constexpr (HasUniqueObjectRepresentations) { |
| 56 | assert(std::memcmp(&from, &middle, sizeof(T)) == 0); |
| 57 | assert(std::memcmp(&to, &middle, sizeof(T)) == 0); |
| 58 | assert(std::memcmp(&middle, &middle2, sizeof(T)) == 0); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | template <typename Intermediate, bool HasUniqueObjectRepresentations = true, typename T> |
| 63 | void test_roundtrip_through(T from) { |
| 64 | static_assert(sizeof(Intermediate) == sizeof(T)); |
| 65 | |
| 66 | Intermediate middle = std::bit_cast<Intermediate>(from); |
| 67 | T to = std::bit_cast<T>(middle); |
| 68 | Intermediate middle2 = std::bit_cast<Intermediate>(to); |
| 69 | |
| 70 | assert((from == to) == (from == from)); // because NaN |
| 71 | |
| 72 | if constexpr (HasUniqueObjectRepresentations) { |
| 73 | assert(std::memcmp(&from, &middle, sizeof(T)) == 0); |
| 74 | assert(std::memcmp(&to, &middle, sizeof(T)) == 0); |
| 75 | assert(std::memcmp(&middle, &middle2, sizeof(T)) == 0); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | template <typename T> |
| 80 | constexpr std::array<T, 10> generate_signed_integral_values() { |
| 81 | return {std::numeric_limits<T>::min(), |
| 82 | std::numeric_limits<T>::min() + 1, |
| 83 | static_cast<T>(-2), static_cast<T>(-1), |
| 84 | static_cast<T>(0), static_cast<T>(1), |
| 85 | static_cast<T>(2), static_cast<T>(3), |
| 86 | std::numeric_limits<T>::max() - 1, |
| 87 | std::numeric_limits<T>::max()}; |
| 88 | } |
| 89 | |
| 90 | template <typename T> |
| 91 | constexpr std::array<T, 6> generate_unsigned_integral_values() { |
| 92 | return {static_cast<T>(0), static_cast<T>(1), |
| 93 | static_cast<T>(2), static_cast<T>(3), |
| 94 | std::numeric_limits<T>::max() - 1, |
| 95 | std::numeric_limits<T>::max()}; |
| 96 | } |
| 97 | |
| 98 | bool tests() { |
| 99 | for (bool b : {false, true}) { |
| 100 | test_roundtrip_through_nested_T(from: b); |
| 101 | test_roundtrip_through_buffer(from: b); |
| 102 | test_roundtrip_through<char>(from: b); |
| 103 | } |
| 104 | |
| 105 | for (char c : {'\0', 'a', 'b', 'c', 'd'}) { |
| 106 | test_roundtrip_through_nested_T(from: c); |
| 107 | test_roundtrip_through_buffer(from: c); |
| 108 | } |
| 109 | |
| 110 | // Fundamental signed integer types |
| 111 | for (signed char i : generate_signed_integral_values<signed char>()) { |
| 112 | test_roundtrip_through_nested_T(from: i); |
| 113 | test_roundtrip_through_buffer(from: i); |
| 114 | } |
| 115 | |
| 116 | for (short i : generate_signed_integral_values<short>()) { |
| 117 | test_roundtrip_through_nested_T(from: i); |
| 118 | test_roundtrip_through_buffer(from: i); |
| 119 | } |
| 120 | |
| 121 | for (int i : generate_signed_integral_values<int>()) { |
| 122 | test_roundtrip_through_nested_T(from: i); |
| 123 | test_roundtrip_through_buffer(from: i); |
| 124 | test_roundtrip_through<float>(from: i); |
| 125 | } |
| 126 | |
| 127 | for (long i : generate_signed_integral_values<long>()) { |
| 128 | test_roundtrip_through_nested_T(from: i); |
| 129 | test_roundtrip_through_buffer(from: i); |
| 130 | } |
| 131 | |
| 132 | for (long long i : generate_signed_integral_values<long long>()) { |
| 133 | test_roundtrip_through_nested_T(from: i); |
| 134 | test_roundtrip_through_buffer(from: i); |
| 135 | test_roundtrip_through<double>(from: i); |
| 136 | } |
| 137 | |
| 138 | // Fundamental unsigned integer types |
| 139 | for (unsigned char i : generate_unsigned_integral_values<unsigned char>()) { |
| 140 | test_roundtrip_through_nested_T(from: i); |
| 141 | test_roundtrip_through_buffer(from: i); |
| 142 | } |
| 143 | |
| 144 | for (unsigned short i : generate_unsigned_integral_values<unsigned short>()) { |
| 145 | test_roundtrip_through_nested_T(from: i); |
| 146 | test_roundtrip_through_buffer(from: i); |
| 147 | } |
| 148 | |
| 149 | for (unsigned int i : generate_unsigned_integral_values<unsigned int>()) { |
| 150 | test_roundtrip_through_nested_T(from: i); |
| 151 | test_roundtrip_through_buffer(from: i); |
| 152 | test_roundtrip_through<float>(from: i); |
| 153 | } |
| 154 | |
| 155 | for (unsigned long i : generate_unsigned_integral_values<unsigned long>()) { |
| 156 | test_roundtrip_through_nested_T(from: i); |
| 157 | test_roundtrip_through_buffer(from: i); |
| 158 | } |
| 159 | |
| 160 | for (unsigned long long i : generate_unsigned_integral_values<unsigned long long>()) { |
| 161 | test_roundtrip_through_nested_T(from: i); |
| 162 | test_roundtrip_through_buffer(from: i); |
| 163 | test_roundtrip_through<double>(from: i); |
| 164 | } |
| 165 | |
| 166 | // Fixed width signed integer types |
| 167 | for (std::int32_t i : generate_signed_integral_values<std::int32_t>()) { |
| 168 | test_roundtrip_through_nested_T(from: i); |
| 169 | test_roundtrip_through_buffer(from: i); |
| 170 | test_roundtrip_through<int>(from: i); |
| 171 | test_roundtrip_through<std::uint32_t>(from: i); |
| 172 | test_roundtrip_through<float>(from: i); |
| 173 | } |
| 174 | |
| 175 | for (std::int64_t i : generate_signed_integral_values<std::int64_t>()) { |
| 176 | test_roundtrip_through_nested_T(from: i); |
| 177 | test_roundtrip_through_buffer(from: i); |
| 178 | test_roundtrip_through<long long>(from: i); |
| 179 | test_roundtrip_through<std::uint64_t>(from: i); |
| 180 | test_roundtrip_through<double>(from: i); |
| 181 | } |
| 182 | |
| 183 | // Fixed width unsigned integer types |
| 184 | for (std::uint32_t i : generate_unsigned_integral_values<std::uint32_t>()) { |
| 185 | test_roundtrip_through_nested_T(from: i); |
| 186 | test_roundtrip_through_buffer(from: i); |
| 187 | test_roundtrip_through<int>(from: i); |
| 188 | test_roundtrip_through<std::int32_t>(from: i); |
| 189 | test_roundtrip_through<float>(from: i); |
| 190 | } |
| 191 | |
| 192 | for (std::uint64_t i : generate_unsigned_integral_values<std::uint64_t>()) { |
| 193 | test_roundtrip_through_nested_T(from: i); |
| 194 | test_roundtrip_through_buffer(from: i); |
| 195 | test_roundtrip_through<long long>(from: i); |
| 196 | test_roundtrip_through<std::int64_t>(from: i); |
| 197 | test_roundtrip_through<double>(from: i); |
| 198 | } |
| 199 | |
| 200 | // Floating point types |
| 201 | for (float i : {0.0f, 1.0f, -1.0f, 10.0f, -10.0f, 1e10f, 1e-10f, 1e20f, 1e-20f, 2.71828f, 3.14159f, |
| 202 | std::nanf(tagb: "" ), |
| 203 | __builtin_nanf("0x55550001" ), // NaN with a payload |
| 204 | std::numeric_limits<float>::signaling_NaN(), |
| 205 | std::numeric_limits<float>::quiet_NaN()}) { |
| 206 | test_roundtrip_through_nested_T(from: i); |
| 207 | test_roundtrip_through_buffer(from: i); |
| 208 | test_roundtrip_through<int>(from: i); |
| 209 | } |
| 210 | |
| 211 | for (double i : {0.0, 1.0, -1.0, 10.0, -10.0, 1e10, 1e-10, 1e100, 1e-100, |
| 212 | 2.718281828459045, |
| 213 | 3.141592653589793238462643383279502884197169399375105820974944, |
| 214 | std::nan(tagb: "" ), |
| 215 | std::numeric_limits<double>::signaling_NaN(), |
| 216 | std::numeric_limits<double>::quiet_NaN()}) { |
| 217 | test_roundtrip_through_nested_T(from: i); |
| 218 | test_roundtrip_through_buffer(from: i); |
| 219 | test_roundtrip_through<long long>(from: i); |
| 220 | } |
| 221 | |
| 222 | for (long double i : {0.0l, 1.0l, -1.0l, 10.0l, -10.0l, 1e10l, 1e-10l, 1e100l, 1e-100l, |
| 223 | 2.718281828459045l, |
| 224 | 3.141592653589793238462643383279502884197169399375105820974944l, |
| 225 | std::nanl(tagb: "" ), |
| 226 | std::numeric_limits<long double>::signaling_NaN(), |
| 227 | std::numeric_limits<long double>::quiet_NaN()}) { |
| 228 | // Note that x86's `long double` has 80 value bits and 48 padding bits. |
| 229 | test_roundtrip_through_nested_T<false>(from: i); |
| 230 | test_roundtrip_through_buffer<false>(from: i); |
| 231 | |
| 232 | #ifdef TEST_LONG_DOUBLE_IS_DOUBLE |
| 233 | test_roundtrip_through<double, false>(i); |
| 234 | #endif |
| 235 | #if defined(__SIZEOF_INT128__) && __SIZEOF_LONG_DOUBLE__ == __SIZEOF_INT128__ && \ |
| 236 | !TEST_HAS_FEATURE(memory_sanitizer) // Some bits are just padding. |
| 237 | test_roundtrip_through<__int128_t, false>(i); |
| 238 | test_roundtrip_through<__uint128_t, false>(i); |
| 239 | #endif |
| 240 | } |
| 241 | |
| 242 | // Test pointers |
| 243 | { |
| 244 | { |
| 245 | int obj = 3; |
| 246 | void* p = &obj; |
| 247 | test_roundtrip_through_nested_T(from: p); |
| 248 | test_roundtrip_through_buffer(from: p); |
| 249 | test_roundtrip_through<void*>(from: p); |
| 250 | test_roundtrip_through<char*>(from: p); |
| 251 | test_roundtrip_through<int*>(from: p); |
| 252 | } |
| 253 | { |
| 254 | int obj = 3; |
| 255 | int* p = &obj; |
| 256 | test_roundtrip_through_nested_T(from: p); |
| 257 | test_roundtrip_through_buffer(from: p); |
| 258 | test_roundtrip_through<int*>(from: p); |
| 259 | test_roundtrip_through<char*>(from: p); |
| 260 | test_roundtrip_through<void*>(from: p); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | return true; |
| 265 | } |
| 266 | |
| 267 | // TODO: There doesn't seem to be a way to perform non-trivial correctness |
| 268 | // tests inside constexpr. |
| 269 | constexpr bool basic_constexpr_test() { |
| 270 | struct Nested { char buffer[sizeof(int)]; }; |
| 271 | int from = 3; |
| 272 | Nested middle = std::bit_cast<Nested>(from); |
| 273 | int to = std::bit_cast<int>(middle); |
| 274 | assert(from == to); |
| 275 | return true; |
| 276 | } |
| 277 | |
| 278 | int main(int, char**) { |
| 279 | tests(); |
| 280 | static_assert(basic_constexpr_test()); |
| 281 | return 0; |
| 282 | } |
| 283 | |