1 | #[doc = include_str!("panic.md" )] |
2 | #[macro_export ] |
3 | #[rustc_builtin_macro (core_panic)] |
4 | #[allow_internal_unstable (edition_panic)] |
5 | #[stable (feature = "core" , since = "1.6.0" )] |
6 | #[rustc_diagnostic_item = "core_panic_macro" ] |
7 | macro_rules! panic { |
8 | // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021` |
9 | // depending on the edition of the caller. |
10 | ($($arg:tt)*) => { |
11 | /* compiler built-in */ |
12 | }; |
13 | } |
14 | |
15 | /// Asserts that two expressions are equal to each other (using [`PartialEq`]). |
16 | /// |
17 | /// Assertions are always checked in both debug and release builds, and cannot |
18 | /// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in |
19 | /// release builds by default. |
20 | /// |
21 | /// [`debug_assert_eq!`]: crate::debug_assert_eq |
22 | /// |
23 | /// On panic, this macro will print the values of the expressions with their |
24 | /// debug representations. |
25 | /// |
26 | /// Like [`assert!`], this macro has a second form, where a custom |
27 | /// panic message can be provided. |
28 | /// |
29 | /// # Examples |
30 | /// |
31 | /// ``` |
32 | /// let a = 3; |
33 | /// let b = 1 + 2; |
34 | /// assert_eq!(a, b); |
35 | /// |
36 | /// assert_eq!(a, b, "we are testing addition with {} and {}" , a, b); |
37 | /// ``` |
38 | #[macro_export ] |
39 | #[stable (feature = "rust1" , since = "1.0.0" )] |
40 | #[rustc_diagnostic_item = "assert_eq_macro" ] |
41 | #[allow_internal_unstable (panic_internals)] |
42 | macro_rules! assert_eq { |
43 | ($left:expr, $right:expr $(,)?) => { |
44 | match (&$left, &$right) { |
45 | (left_val, right_val) => { |
46 | if !(*left_val == *right_val) { |
47 | let kind = $crate::panicking::AssertKind::Eq; |
48 | // The reborrows below are intentional. Without them, the stack slot for the |
49 | // borrow is initialized even before the values are compared, leading to a |
50 | // noticeable slow down. |
51 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None); |
52 | } |
53 | } |
54 | } |
55 | }; |
56 | ($left:expr, $right:expr, $($arg:tt)+) => { |
57 | match (&$left, &$right) { |
58 | (left_val, right_val) => { |
59 | if !(*left_val == *right_val) { |
60 | let kind = $crate::panicking::AssertKind::Eq; |
61 | // The reborrows below are intentional. Without them, the stack slot for the |
62 | // borrow is initialized even before the values are compared, leading to a |
63 | // noticeable slow down. |
64 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+))); |
65 | } |
66 | } |
67 | } |
68 | }; |
69 | } |
70 | |
71 | /// Asserts that two expressions are not equal to each other (using [`PartialEq`]). |
72 | /// |
73 | /// Assertions are always checked in both debug and release builds, and cannot |
74 | /// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in |
75 | /// release builds by default. |
76 | /// |
77 | /// [`debug_assert_ne!`]: crate::debug_assert_ne |
78 | /// |
79 | /// On panic, this macro will print the values of the expressions with their |
80 | /// debug representations. |
81 | /// |
82 | /// Like [`assert!`], this macro has a second form, where a custom |
83 | /// panic message can be provided. |
84 | /// |
85 | /// # Examples |
86 | /// |
87 | /// ``` |
88 | /// let a = 3; |
89 | /// let b = 2; |
90 | /// assert_ne!(a, b); |
91 | /// |
92 | /// assert_ne!(a, b, "we are testing that the values are not equal" ); |
93 | /// ``` |
94 | #[macro_export ] |
95 | #[stable (feature = "assert_ne" , since = "1.13.0" )] |
96 | #[rustc_diagnostic_item = "assert_ne_macro" ] |
97 | #[allow_internal_unstable (panic_internals)] |
98 | macro_rules! assert_ne { |
99 | ($left:expr, $right:expr $(,)?) => { |
100 | match (&$left, &$right) { |
101 | (left_val, right_val) => { |
102 | if *left_val == *right_val { |
103 | let kind = $crate::panicking::AssertKind::Ne; |
104 | // The reborrows below are intentional. Without them, the stack slot for the |
105 | // borrow is initialized even before the values are compared, leading to a |
106 | // noticeable slow down. |
107 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None); |
108 | } |
109 | } |
110 | } |
111 | }; |
112 | ($left:expr, $right:expr, $($arg:tt)+) => { |
113 | match (&($left), &($right)) { |
114 | (left_val, right_val) => { |
115 | if *left_val == *right_val { |
116 | let kind = $crate::panicking::AssertKind::Ne; |
117 | // The reborrows below are intentional. Without them, the stack slot for the |
118 | // borrow is initialized even before the values are compared, leading to a |
119 | // noticeable slow down. |
120 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+))); |
121 | } |
122 | } |
123 | } |
124 | }; |
125 | } |
126 | |
127 | /// Asserts that an expression matches the provided pattern. |
128 | /// |
129 | /// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print |
130 | /// the debug representation of the actual value shape that did not meet expectations. In contrast, |
131 | /// using [`assert!`] will only print that expectations were not met, but not why. |
132 | /// |
133 | /// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The |
134 | /// optional if guard can be used to add additional checks that must be true for the matched value, |
135 | /// otherwise this macro will panic. |
136 | /// |
137 | /// Assertions are always checked in both debug and release builds, and cannot |
138 | /// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in |
139 | /// release builds by default. |
140 | /// |
141 | /// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches |
142 | /// |
143 | /// On panic, this macro will print the value of the expression with its debug representation. |
144 | /// |
145 | /// Like [`assert!`], this macro has a second form, where a custom panic message can be provided. |
146 | /// |
147 | /// # Examples |
148 | /// |
149 | /// ``` |
150 | /// #![feature(assert_matches)] |
151 | /// |
152 | /// use std::assert_matches::assert_matches; |
153 | /// |
154 | /// let a = Some(345); |
155 | /// let b = Some(56); |
156 | /// assert_matches!(a, Some(_)); |
157 | /// assert_matches!(b, Some(_)); |
158 | /// |
159 | /// assert_matches!(a, Some(345)); |
160 | /// assert_matches!(a, Some(345) | None); |
161 | /// |
162 | /// // assert_matches!(a, None); // panics |
163 | /// // assert_matches!(b, Some(345)); // panics |
164 | /// // assert_matches!(b, Some(345) | None); // panics |
165 | /// |
166 | /// assert_matches!(a, Some(x) if x > 100); |
167 | /// // assert_matches!(a, Some(x) if x < 100); // panics |
168 | /// ``` |
169 | #[unstable (feature = "assert_matches" , issue = "82775" )] |
170 | #[allow_internal_unstable (panic_internals)] |
171 | #[rustc_macro_transparency = "semitransparent" ] |
172 | pub macro assert_matches { |
173 | ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => { |
174 | match $left { |
175 | $( $pattern )|+ $( if $guard )? => {} |
176 | ref left_val => { |
177 | $crate::panicking::assert_matches_failed( |
178 | left_val, |
179 | $crate::stringify!($($pattern)|+ $(if $guard)?), |
180 | $crate::option::Option::None |
181 | ); |
182 | } |
183 | } |
184 | }, |
185 | ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => { |
186 | match $left { |
187 | $( $pattern )|+ $( if $guard )? => {} |
188 | ref left_val => { |
189 | $crate::panicking::assert_matches_failed( |
190 | left_val, |
191 | $crate::stringify!($($pattern)|+ $(if $guard)?), |
192 | $crate::option::Option::Some($crate::format_args!($($arg)+)) |
193 | ); |
194 | } |
195 | } |
196 | }, |
197 | } |
198 | |
199 | /// A macro for defining `#[cfg]` match-like statements. |
200 | /// |
201 | /// It is similar to the `if/elif` C preprocessor macro by allowing definition of a cascade of |
202 | /// `#[cfg]` cases, emitting the implementation which matches first. |
203 | /// |
204 | /// This allows you to conveniently provide a long list `#[cfg]`'d blocks of code |
205 | /// without having to rewrite each clause multiple times. |
206 | /// |
207 | /// Trailing `_` wildcard match arms are **optional** and they indicate a fallback branch when |
208 | /// all previous declarations do not evaluate to true. |
209 | /// |
210 | /// # Example |
211 | /// |
212 | /// ``` |
213 | /// #![feature(cfg_match)] |
214 | /// |
215 | /// cfg_match! { |
216 | /// unix => { |
217 | /// fn foo() { /* unix specific functionality */ } |
218 | /// } |
219 | /// target_pointer_width = "32" => { |
220 | /// fn foo() { /* non-unix, 32-bit functionality */ } |
221 | /// } |
222 | /// _ => { |
223 | /// fn foo() { /* fallback implementation */ } |
224 | /// } |
225 | /// } |
226 | /// ``` |
227 | /// |
228 | /// If desired, it is possible to return expressions through the use of surrounding braces: |
229 | /// |
230 | /// ``` |
231 | /// #![feature(cfg_match)] |
232 | /// |
233 | /// let _some_string = cfg_match! {{ |
234 | /// unix => { "With great power comes great electricity bills" } |
235 | /// _ => { "Behind every successful diet is an unwatched pizza" } |
236 | /// }}; |
237 | /// ``` |
238 | #[unstable (feature = "cfg_match" , issue = "115585" )] |
239 | #[rustc_diagnostic_item = "cfg_match" ] |
240 | pub macro cfg_match { |
241 | ({ $($tt:tt)* }) => {{ |
242 | cfg_match! { $($tt)* } |
243 | }}, |
244 | (_ => { $($output:tt)* }) => { |
245 | $($output)* |
246 | }, |
247 | ( |
248 | $cfg:meta => $output:tt |
249 | $($( $rest:tt )+)? |
250 | ) => { |
251 | #[cfg($cfg)] |
252 | cfg_match! { _ => $output } |
253 | $( |
254 | #[cfg(not($cfg))] |
255 | cfg_match! { $($rest)+ } |
256 | )? |
257 | }, |
258 | } |
259 | |
260 | /// Asserts that a boolean expression is `true` at runtime. |
261 | /// |
262 | /// This will invoke the [`panic!`] macro if the provided expression cannot be |
263 | /// evaluated to `true` at runtime. |
264 | /// |
265 | /// Like [`assert!`], this macro also has a second version, where a custom panic |
266 | /// message can be provided. |
267 | /// |
268 | /// # Uses |
269 | /// |
270 | /// Unlike [`assert!`], `debug_assert!` statements are only enabled in non |
271 | /// optimized builds by default. An optimized build will not execute |
272 | /// `debug_assert!` statements unless `-C debug-assertions` is passed to the |
273 | /// compiler. This makes `debug_assert!` useful for checks that are too |
274 | /// expensive to be present in a release build but may be helpful during |
275 | /// development. The result of expanding `debug_assert!` is always type checked. |
276 | /// |
277 | /// An unchecked assertion allows a program in an inconsistent state to keep |
278 | /// running, which might have unexpected consequences but does not introduce |
279 | /// unsafety as long as this only happens in safe code. The performance cost |
280 | /// of assertions, however, is not measurable in general. Replacing [`assert!`] |
281 | /// with `debug_assert!` is thus only encouraged after thorough profiling, and |
282 | /// more importantly, only in safe code! |
283 | /// |
284 | /// # Examples |
285 | /// |
286 | /// ``` |
287 | /// // the panic message for these assertions is the stringified value of the |
288 | /// // expression given. |
289 | /// debug_assert!(true); |
290 | /// |
291 | /// fn some_expensive_computation() -> bool { true } // a very simple function |
292 | /// debug_assert!(some_expensive_computation()); |
293 | /// |
294 | /// // assert with a custom message |
295 | /// let x = true; |
296 | /// debug_assert!(x, "x wasn't true!" ); |
297 | /// |
298 | /// let a = 3; let b = 27; |
299 | /// debug_assert!(a + b == 30, "a = {}, b = {}" , a, b); |
300 | /// ``` |
301 | #[macro_export ] |
302 | #[stable (feature = "rust1" , since = "1.0.0" )] |
303 | #[rustc_diagnostic_item = "debug_assert_macro" ] |
304 | #[allow_internal_unstable (edition_panic)] |
305 | macro_rules! debug_assert { |
306 | ($($arg:tt)*) => { |
307 | if $crate::cfg!(debug_assertions) { |
308 | $crate::assert!($($arg)*); |
309 | } |
310 | }; |
311 | } |
312 | |
313 | /// Asserts that two expressions are equal to each other. |
314 | /// |
315 | /// On panic, this macro will print the values of the expressions with their |
316 | /// debug representations. |
317 | /// |
318 | /// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non |
319 | /// optimized builds by default. An optimized build will not execute |
320 | /// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the |
321 | /// compiler. This makes `debug_assert_eq!` useful for checks that are too |
322 | /// expensive to be present in a release build but may be helpful during |
323 | /// development. The result of expanding `debug_assert_eq!` is always type checked. |
324 | /// |
325 | /// # Examples |
326 | /// |
327 | /// ``` |
328 | /// let a = 3; |
329 | /// let b = 1 + 2; |
330 | /// debug_assert_eq!(a, b); |
331 | /// ``` |
332 | #[macro_export ] |
333 | #[stable (feature = "rust1" , since = "1.0.0" )] |
334 | #[rustc_diagnostic_item = "debug_assert_eq_macro" ] |
335 | macro_rules! debug_assert_eq { |
336 | ($($arg:tt)*) => { |
337 | if $crate::cfg!(debug_assertions) { |
338 | $crate::assert_eq!($($arg)*); |
339 | } |
340 | }; |
341 | } |
342 | |
343 | /// Asserts that two expressions are not equal to each other. |
344 | /// |
345 | /// On panic, this macro will print the values of the expressions with their |
346 | /// debug representations. |
347 | /// |
348 | /// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non |
349 | /// optimized builds by default. An optimized build will not execute |
350 | /// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the |
351 | /// compiler. This makes `debug_assert_ne!` useful for checks that are too |
352 | /// expensive to be present in a release build but may be helpful during |
353 | /// development. The result of expanding `debug_assert_ne!` is always type checked. |
354 | /// |
355 | /// # Examples |
356 | /// |
357 | /// ``` |
358 | /// let a = 3; |
359 | /// let b = 2; |
360 | /// debug_assert_ne!(a, b); |
361 | /// ``` |
362 | #[macro_export ] |
363 | #[stable (feature = "assert_ne" , since = "1.13.0" )] |
364 | #[rustc_diagnostic_item = "debug_assert_ne_macro" ] |
365 | macro_rules! debug_assert_ne { |
366 | ($($arg:tt)*) => { |
367 | if $crate::cfg!(debug_assertions) { |
368 | $crate::assert_ne!($($arg)*); |
369 | } |
370 | }; |
371 | } |
372 | |
373 | /// Asserts that an expression matches the provided pattern. |
374 | /// |
375 | /// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can |
376 | /// print the debug representation of the actual value shape that did not meet expectations. In |
377 | /// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why. |
378 | /// |
379 | /// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The |
380 | /// optional if guard can be used to add additional checks that must be true for the matched value, |
381 | /// otherwise this macro will panic. |
382 | /// |
383 | /// On panic, this macro will print the value of the expression with its debug representation. |
384 | /// |
385 | /// Like [`assert!`], this macro has a second form, where a custom panic message can be provided. |
386 | /// |
387 | /// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized |
388 | /// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless |
389 | /// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for |
390 | /// checks that are too expensive to be present in a release build but may be helpful during |
391 | /// development. The result of expanding `debug_assert_matches!` is always type checked. |
392 | /// |
393 | /// # Examples |
394 | /// |
395 | /// ``` |
396 | /// #![feature(assert_matches)] |
397 | /// |
398 | /// use std::assert_matches::debug_assert_matches; |
399 | /// |
400 | /// let a = Some(345); |
401 | /// let b = Some(56); |
402 | /// debug_assert_matches!(a, Some(_)); |
403 | /// debug_assert_matches!(b, Some(_)); |
404 | /// |
405 | /// debug_assert_matches!(a, Some(345)); |
406 | /// debug_assert_matches!(a, Some(345) | None); |
407 | /// |
408 | /// // debug_assert_matches!(a, None); // panics |
409 | /// // debug_assert_matches!(b, Some(345)); // panics |
410 | /// // debug_assert_matches!(b, Some(345) | None); // panics |
411 | /// |
412 | /// debug_assert_matches!(a, Some(x) if x > 100); |
413 | /// // debug_assert_matches!(a, Some(x) if x < 100); // panics |
414 | /// ``` |
415 | #[unstable (feature = "assert_matches" , issue = "82775" )] |
416 | #[allow_internal_unstable (assert_matches)] |
417 | #[rustc_macro_transparency = "semitransparent" ] |
418 | pub macro debug_assert_matches($($arg:tt)*) { |
419 | if $crate::cfg!(debug_assertions) { |
420 | $crate::assert_matches::assert_matches!($($arg)*); |
421 | } |
422 | } |
423 | |
424 | /// Returns whether the given expression matches the provided pattern. |
425 | /// |
426 | /// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be |
427 | /// used to add additional checks that must be true for the matched value, otherwise this macro will |
428 | /// return `false`. |
429 | /// |
430 | /// When testing that a value matches a pattern, it's generally preferable to use |
431 | /// [`assert_matches!`] as it will print the debug representation of the value if the assertion |
432 | /// fails. |
433 | /// |
434 | /// # Examples |
435 | /// |
436 | /// ``` |
437 | /// let foo = 'f' ; |
438 | /// assert!(matches!(foo, 'A' ..='Z' | 'a' ..='z' )); |
439 | /// |
440 | /// let bar = Some(4); |
441 | /// assert!(matches!(bar, Some(x) if x > 2)); |
442 | /// ``` |
443 | #[macro_export ] |
444 | #[stable (feature = "matches_macro" , since = "1.42.0" )] |
445 | #[rustc_diagnostic_item = "matches_macro" ] |
446 | macro_rules! matches { |
447 | ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => { |
448 | match $expression { |
449 | $pattern $(if $guard)? => true, |
450 | _ => false |
451 | } |
452 | }; |
453 | } |
454 | |
455 | /// Unwraps a result or propagates its error. |
456 | /// |
457 | /// The [`?` operator][propagating-errors] was added to replace `try!` |
458 | /// and should be used instead. Furthermore, `try` is a reserved word |
459 | /// in Rust 2018, so if you must use it, you will need to use the |
460 | /// [raw-identifier syntax][ris]: `r#try`. |
461 | /// |
462 | /// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator |
463 | /// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html |
464 | /// |
465 | /// `try!` matches the given [`Result`]. In case of the `Ok` variant, the |
466 | /// expression has the value of the wrapped value. |
467 | /// |
468 | /// In case of the `Err` variant, it retrieves the inner error. `try!` then |
469 | /// performs conversion using `From`. This provides automatic conversion |
470 | /// between specialized errors and more general ones. The resulting |
471 | /// error is then immediately returned. |
472 | /// |
473 | /// Because of the early return, `try!` can only be used in functions that |
474 | /// return [`Result`]. |
475 | /// |
476 | /// # Examples |
477 | /// |
478 | /// ``` |
479 | /// use std::io; |
480 | /// use std::fs::File; |
481 | /// use std::io::prelude::*; |
482 | /// |
483 | /// enum MyError { |
484 | /// FileWriteError |
485 | /// } |
486 | /// |
487 | /// impl From<io::Error> for MyError { |
488 | /// fn from(e: io::Error) -> MyError { |
489 | /// MyError::FileWriteError |
490 | /// } |
491 | /// } |
492 | /// |
493 | /// // The preferred method of quick returning Errors |
494 | /// fn write_to_file_question() -> Result<(), MyError> { |
495 | /// let mut file = File::create("my_best_friends.txt" )?; |
496 | /// file.write_all(b"This is a list of my best friends." )?; |
497 | /// Ok(()) |
498 | /// } |
499 | /// |
500 | /// // The previous method of quick returning Errors |
501 | /// fn write_to_file_using_try() -> Result<(), MyError> { |
502 | /// let mut file = r#try!(File::create("my_best_friends.txt" )); |
503 | /// r#try!(file.write_all(b"This is a list of my best friends." )); |
504 | /// Ok(()) |
505 | /// } |
506 | /// |
507 | /// // This is equivalent to: |
508 | /// fn write_to_file_using_match() -> Result<(), MyError> { |
509 | /// let mut file = r#try!(File::create("my_best_friends.txt" )); |
510 | /// match file.write_all(b"This is a list of my best friends." ) { |
511 | /// Ok(v) => v, |
512 | /// Err(e) => return Err(From::from(e)), |
513 | /// } |
514 | /// Ok(()) |
515 | /// } |
516 | /// ``` |
517 | #[macro_export ] |
518 | #[stable (feature = "rust1" , since = "1.0.0" )] |
519 | #[deprecated (since = "1.39.0" , note = "use the `?` operator instead" )] |
520 | #[doc (alias = "?" )] |
521 | macro_rules! r#try { |
522 | ($expr:expr $(,)?) => { |
523 | match $expr { |
524 | $crate::result::Result::Ok(val) => val, |
525 | $crate::result::Result::Err(err) => { |
526 | return $crate::result::Result::Err($crate::convert::From::from(err)); |
527 | } |
528 | } |
529 | }; |
530 | } |
531 | |
532 | /// Writes formatted data into a buffer. |
533 | /// |
534 | /// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be |
535 | /// formatted according to the specified format string and the result will be passed to the writer. |
536 | /// The writer may be any value with a `write_fmt` method; generally this comes from an |
537 | /// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro |
538 | /// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an |
539 | /// [`io::Result`]. |
540 | /// |
541 | /// See [`std::fmt`] for more information on the format string syntax. |
542 | /// |
543 | /// [`std::fmt`]: ../std/fmt/index.html |
544 | /// [`fmt::Write`]: crate::fmt::Write |
545 | /// [`io::Write`]: ../std/io/trait.Write.html |
546 | /// [`fmt::Result`]: crate::fmt::Result |
547 | /// [`io::Result`]: ../std/io/type.Result.html |
548 | /// |
549 | /// # Examples |
550 | /// |
551 | /// ``` |
552 | /// use std::io::Write; |
553 | /// |
554 | /// fn main() -> std::io::Result<()> { |
555 | /// let mut w = Vec::new(); |
556 | /// write!(&mut w, "test" )?; |
557 | /// write!(&mut w, "formatted {}" , "arguments" )?; |
558 | /// |
559 | /// assert_eq!(w, b"testformatted arguments" ); |
560 | /// Ok(()) |
561 | /// } |
562 | /// ``` |
563 | /// |
564 | /// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects |
565 | /// implementing either, as objects do not typically implement both. However, the module must |
566 | /// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming |
567 | /// them: |
568 | /// |
569 | /// ``` |
570 | /// use std::fmt::Write as _; |
571 | /// use std::io::Write as _; |
572 | /// |
573 | /// fn main() -> Result<(), Box<dyn std::error::Error>> { |
574 | /// let mut s = String::new(); |
575 | /// let mut v = Vec::new(); |
576 | /// |
577 | /// write!(&mut s, "{} {}" , "abc" , 123)?; // uses fmt::Write::write_fmt |
578 | /// write!(&mut v, "s = {:?}" , s)?; // uses io::Write::write_fmt |
579 | /// assert_eq!(v, b"s = \"abc 123 \"" ); |
580 | /// Ok(()) |
581 | /// } |
582 | /// ``` |
583 | /// |
584 | /// If you also need the trait names themselves, such as to implement one or both on your types, |
585 | /// import the containing module and then name them with a prefix: |
586 | /// |
587 | /// ``` |
588 | /// # #![allow(unused_imports)] |
589 | /// use std::fmt::{self, Write as _}; |
590 | /// use std::io::{self, Write as _}; |
591 | /// |
592 | /// struct Example; |
593 | /// |
594 | /// impl fmt::Write for Example { |
595 | /// fn write_str(&mut self, _s: &str) -> core::fmt::Result { |
596 | /// unimplemented!(); |
597 | /// } |
598 | /// } |
599 | /// ``` |
600 | /// |
601 | /// Note: This macro can be used in `no_std` setups as well. |
602 | /// In a `no_std` setup you are responsible for the implementation details of the components. |
603 | /// |
604 | /// ```no_run |
605 | /// use core::fmt::Write; |
606 | /// |
607 | /// struct Example; |
608 | /// |
609 | /// impl Write for Example { |
610 | /// fn write_str(&mut self, _s: &str) -> core::fmt::Result { |
611 | /// unimplemented!(); |
612 | /// } |
613 | /// } |
614 | /// |
615 | /// let mut m = Example{}; |
616 | /// write!(&mut m, "Hello World" ).expect("Not written" ); |
617 | /// ``` |
618 | #[macro_export ] |
619 | #[stable (feature = "rust1" , since = "1.0.0" )] |
620 | #[rustc_diagnostic_item = "write_macro" ] |
621 | macro_rules! write { |
622 | ($dst:expr, $($arg:tt)*) => { |
623 | $dst.write_fmt($crate::format_args!($($arg)*)) |
624 | }; |
625 | } |
626 | |
627 | /// Writes formatted data into a buffer, with a newline appended. |
628 | /// |
629 | /// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone |
630 | /// (no additional CARRIAGE RETURN (`\r`/`U+000D`). |
631 | /// |
632 | /// For more information, see [`write!`]. For information on the format string syntax, see |
633 | /// [`std::fmt`]. |
634 | /// |
635 | /// [`std::fmt`]: ../std/fmt/index.html |
636 | /// |
637 | /// # Examples |
638 | /// |
639 | /// ``` |
640 | /// use std::io::{Write, Result}; |
641 | /// |
642 | /// fn main() -> Result<()> { |
643 | /// let mut w = Vec::new(); |
644 | /// writeln!(&mut w)?; |
645 | /// writeln!(&mut w, "test" )?; |
646 | /// writeln!(&mut w, "formatted {}" , "arguments" )?; |
647 | /// |
648 | /// assert_eq!(&w[..], " \ntest \nformatted arguments \n" .as_bytes()); |
649 | /// Ok(()) |
650 | /// } |
651 | /// ``` |
652 | #[macro_export ] |
653 | #[stable (feature = "rust1" , since = "1.0.0" )] |
654 | #[rustc_diagnostic_item = "writeln_macro" ] |
655 | #[allow_internal_unstable (format_args_nl)] |
656 | macro_rules! writeln { |
657 | ($dst:expr $(,)?) => { |
658 | $crate::write!($dst, " \n" ) |
659 | }; |
660 | ($dst:expr, $($arg:tt)*) => { |
661 | $dst.write_fmt($crate::format_args_nl!($($arg)*)) |
662 | }; |
663 | } |
664 | |
665 | /// Indicates unreachable code. |
666 | /// |
667 | /// This is useful any time that the compiler can't determine that some code is unreachable. For |
668 | /// example: |
669 | /// |
670 | /// * Match arms with guard conditions. |
671 | /// * Loops that dynamically terminate. |
672 | /// * Iterators that dynamically terminate. |
673 | /// |
674 | /// If the determination that the code is unreachable proves incorrect, the |
675 | /// program immediately terminates with a [`panic!`]. |
676 | /// |
677 | /// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which |
678 | /// will cause undefined behavior if the code is reached. |
679 | /// |
680 | /// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked |
681 | /// |
682 | /// # Panics |
683 | /// |
684 | /// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a |
685 | /// fixed, specific message. |
686 | /// |
687 | /// Like `panic!`, this macro has a second form for displaying custom values. |
688 | /// |
689 | /// # Examples |
690 | /// |
691 | /// Match arms: |
692 | /// |
693 | /// ``` |
694 | /// # #[allow (dead_code)] |
695 | /// fn foo(x: Option<i32>) { |
696 | /// match x { |
697 | /// Some(n) if n >= 0 => println!("Some(Non-negative)" ), |
698 | /// Some(n) if n < 0 => println!("Some(Negative)" ), |
699 | /// Some(_) => unreachable!(), // compile error if commented out |
700 | /// None => println!("None" ) |
701 | /// } |
702 | /// } |
703 | /// ``` |
704 | /// |
705 | /// Iterators: |
706 | /// |
707 | /// ``` |
708 | /// # #[allow (dead_code)] |
709 | /// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3 |
710 | /// for i in 0.. { |
711 | /// if 3*i < i { panic!("u32 overflow" ); } |
712 | /// if x < 3*i { return i-1; } |
713 | /// } |
714 | /// unreachable!("The loop should always return" ); |
715 | /// } |
716 | /// ``` |
717 | #[macro_export ] |
718 | #[rustc_builtin_macro (unreachable)] |
719 | #[allow_internal_unstable (edition_panic)] |
720 | #[stable (feature = "rust1" , since = "1.0.0" )] |
721 | #[rustc_diagnostic_item = "unreachable_macro" ] |
722 | macro_rules! unreachable { |
723 | // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021` |
724 | // depending on the edition of the caller. |
725 | ($($arg:tt)*) => { |
726 | /* compiler built-in */ |
727 | }; |
728 | } |
729 | |
730 | /// Indicates unimplemented code by panicking with a message of "not implemented". |
731 | /// |
732 | /// This allows your code to type-check, which is useful if you are prototyping or |
733 | /// implementing a trait that requires multiple methods which you don't plan to use all of. |
734 | /// |
735 | /// The difference between `unimplemented!` and [`todo!`] is that while `todo!` |
736 | /// conveys an intent of implementing the functionality later and the message is "not yet |
737 | /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented". |
738 | /// |
739 | /// Also, some IDEs will mark `todo!`s. |
740 | /// |
741 | /// # Panics |
742 | /// |
743 | /// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a |
744 | /// fixed, specific message. |
745 | /// |
746 | /// Like `panic!`, this macro has a second form for displaying custom values. |
747 | /// |
748 | /// [`todo!`]: crate::todo |
749 | /// |
750 | /// # Examples |
751 | /// |
752 | /// Say we have a trait `Foo`: |
753 | /// |
754 | /// ``` |
755 | /// trait Foo { |
756 | /// fn bar(&self) -> u8; |
757 | /// fn baz(&self); |
758 | /// fn qux(&self) -> Result<u64, ()>; |
759 | /// } |
760 | /// ``` |
761 | /// |
762 | /// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense |
763 | /// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined |
764 | /// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions |
765 | /// to allow our code to compile. |
766 | /// |
767 | /// We still want to have our program stop running if the unimplemented methods are |
768 | /// reached. |
769 | /// |
770 | /// ``` |
771 | /// # trait Foo { |
772 | /// # fn bar(&self) -> u8; |
773 | /// # fn baz(&self); |
774 | /// # fn qux(&self) -> Result<u64, ()>; |
775 | /// # } |
776 | /// struct MyStruct; |
777 | /// |
778 | /// impl Foo for MyStruct { |
779 | /// fn bar(&self) -> u8 { |
780 | /// 1 + 1 |
781 | /// } |
782 | /// |
783 | /// fn baz(&self) { |
784 | /// // It makes no sense to `baz` a `MyStruct`, so we have no logic here |
785 | /// // at all. |
786 | /// // This will display "thread 'main' panicked at 'not implemented'". |
787 | /// unimplemented!(); |
788 | /// } |
789 | /// |
790 | /// fn qux(&self) -> Result<u64, ()> { |
791 | /// // We have some logic here, |
792 | /// // We can add a message to unimplemented! to display our omission. |
793 | /// // This will display: |
794 | /// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'". |
795 | /// unimplemented!("MyStruct isn't quxable" ); |
796 | /// } |
797 | /// } |
798 | /// |
799 | /// fn main() { |
800 | /// let s = MyStruct; |
801 | /// s.bar(); |
802 | /// } |
803 | /// ``` |
804 | #[macro_export ] |
805 | #[stable (feature = "rust1" , since = "1.0.0" )] |
806 | #[rustc_diagnostic_item = "unimplemented_macro" ] |
807 | #[allow_internal_unstable (panic_internals)] |
808 | macro_rules! unimplemented { |
809 | () => { |
810 | $crate::panicking::panic("not implemented" ) |
811 | }; |
812 | ($($arg:tt)+) => { |
813 | $crate::panic!("not implemented: {}" , $crate::format_args!($($arg)+)) |
814 | }; |
815 | } |
816 | |
817 | /// Indicates unfinished code. |
818 | /// |
819 | /// This can be useful if you are prototyping and just |
820 | /// want a placeholder to let your code pass type analysis. |
821 | /// |
822 | /// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys |
823 | /// an intent of implementing the functionality later and the message is "not yet |
824 | /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented". |
825 | /// |
826 | /// Also, some IDEs will mark `todo!`s. |
827 | /// |
828 | /// # Panics |
829 | /// |
830 | /// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a |
831 | /// fixed, specific message. |
832 | /// |
833 | /// Like `panic!`, this macro has a second form for displaying custom values. |
834 | /// |
835 | /// # Examples |
836 | /// |
837 | /// Here's an example of some in-progress code. We have a trait `Foo`: |
838 | /// |
839 | /// ``` |
840 | /// trait Foo { |
841 | /// fn bar(&self) -> u8; |
842 | /// fn baz(&self); |
843 | /// fn qux(&self) -> Result<u64, ()>; |
844 | /// } |
845 | /// ``` |
846 | /// |
847 | /// We want to implement `Foo` on one of our types, but we also want to work on |
848 | /// just `bar()` first. In order for our code to compile, we need to implement |
849 | /// `baz()` and `qux()`, so we can use `todo!`: |
850 | /// |
851 | /// ``` |
852 | /// # trait Foo { |
853 | /// # fn bar(&self) -> u8; |
854 | /// # fn baz(&self); |
855 | /// # fn qux(&self) -> Result<u64, ()>; |
856 | /// # } |
857 | /// struct MyStruct; |
858 | /// |
859 | /// impl Foo for MyStruct { |
860 | /// fn bar(&self) -> u8 { |
861 | /// 1 + 1 |
862 | /// } |
863 | /// |
864 | /// fn baz(&self) { |
865 | /// // Let's not worry about implementing baz() for now |
866 | /// todo!(); |
867 | /// } |
868 | /// |
869 | /// fn qux(&self) -> Result<u64, ()> { |
870 | /// // We can add a message to todo! to display our omission. |
871 | /// // This will display: |
872 | /// // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'". |
873 | /// todo!("MyStruct is not yet quxable" ); |
874 | /// } |
875 | /// } |
876 | /// |
877 | /// fn main() { |
878 | /// let s = MyStruct; |
879 | /// s.bar(); |
880 | /// |
881 | /// // We aren't even using baz() or qux(), so this is fine. |
882 | /// } |
883 | /// ``` |
884 | #[macro_export ] |
885 | #[stable (feature = "todo_macro" , since = "1.40.0" )] |
886 | #[rustc_diagnostic_item = "todo_macro" ] |
887 | #[allow_internal_unstable (panic_internals)] |
888 | macro_rules! todo { |
889 | () => { |
890 | $crate::panicking::panic("not yet implemented" ) |
891 | }; |
892 | ($($arg:tt)+) => { |
893 | $crate::panic!("not yet implemented: {}" , $crate::format_args!($($arg)+)) |
894 | }; |
895 | } |
896 | |
897 | /// Definitions of built-in macros. |
898 | /// |
899 | /// Most of the macro properties (stability, visibility, etc.) are taken from the source code here, |
900 | /// with exception of expansion functions transforming macro inputs into outputs, |
901 | /// those functions are provided by the compiler. |
902 | pub(crate) mod builtin { |
903 | |
904 | /// Causes compilation to fail with the given error message when encountered. |
905 | /// |
906 | /// This macro should be used when a crate uses a conditional compilation strategy to provide |
907 | /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`], |
908 | /// but emits an error during *compilation* rather than at *runtime*. |
909 | /// |
910 | /// # Examples |
911 | /// |
912 | /// Two such examples are macros and `#[cfg]` environments. |
913 | /// |
914 | /// Emit a better compiler error if a macro is passed invalid values. Without the final branch, |
915 | /// the compiler would still emit an error, but the error's message would not mention the two |
916 | /// valid values. |
917 | /// |
918 | /// ```compile_fail |
919 | /// macro_rules! give_me_foo_or_bar { |
920 | /// (foo) => {}; |
921 | /// (bar) => {}; |
922 | /// ($x:ident) => { |
923 | /// compile_error!("This macro only accepts `foo` or `bar`" ); |
924 | /// } |
925 | /// } |
926 | /// |
927 | /// give_me_foo_or_bar!(neither); |
928 | /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`" |
929 | /// ``` |
930 | /// |
931 | /// Emit a compiler error if one of a number of features isn't available. |
932 | /// |
933 | /// ```compile_fail |
934 | /// #[cfg(not(any(feature = "foo" , feature = "bar" )))] |
935 | /// compile_error!("Either feature \"foo \" or \"bar \" must be enabled for this crate." ); |
936 | /// ``` |
937 | #[stable (feature = "compile_error_macro" , since = "1.20.0" )] |
938 | #[rustc_builtin_macro ] |
939 | #[macro_export ] |
940 | macro_rules! compile_error { |
941 | ($msg:expr $(,)?) => {{ /* compiler built-in */ }}; |
942 | } |
943 | |
944 | /// Constructs parameters for the other string-formatting macros. |
945 | /// |
946 | /// This macro functions by taking a formatting string literal containing |
947 | /// `{}` for each additional argument passed. `format_args!` prepares the |
948 | /// additional parameters to ensure the output can be interpreted as a string |
949 | /// and canonicalizes the arguments into a single type. Any value that implements |
950 | /// the [`Display`] trait can be passed to `format_args!`, as can any |
951 | /// [`Debug`] implementation be passed to a `{:?}` within the formatting string. |
952 | /// |
953 | /// This macro produces a value of type [`fmt::Arguments`]. This value can be |
954 | /// passed to the macros within [`std::fmt`] for performing useful redirection. |
955 | /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are |
956 | /// proxied through this one. `format_args!`, unlike its derived macros, avoids |
957 | /// heap allocations. |
958 | /// |
959 | /// You can use the [`fmt::Arguments`] value that `format_args!` returns |
960 | /// in `Debug` and `Display` contexts as seen below. The example also shows |
961 | /// that `Debug` and `Display` format to the same thing: the interpolated |
962 | /// format string in `format_args!`. |
963 | /// |
964 | /// ```rust |
965 | /// let debug = format!("{:?}" , format_args!("{} foo {:?}" , 1, 2)); |
966 | /// let display = format!("{}" , format_args!("{} foo {:?}" , 1, 2)); |
967 | /// assert_eq!("1 foo 2" , display); |
968 | /// assert_eq!(display, debug); |
969 | /// ``` |
970 | /// |
971 | /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html) |
972 | /// for details of the macro argument syntax, and further information. |
973 | /// |
974 | /// [`Display`]: crate::fmt::Display |
975 | /// [`Debug`]: crate::fmt::Debug |
976 | /// [`fmt::Arguments`]: crate::fmt::Arguments |
977 | /// [`std::fmt`]: ../std/fmt/index.html |
978 | /// [`format!`]: ../std/macro.format.html |
979 | /// [`println!`]: ../std/macro.println.html |
980 | /// |
981 | /// # Examples |
982 | /// |
983 | /// ``` |
984 | /// use std::fmt; |
985 | /// |
986 | /// let s = fmt::format(format_args!("hello {}" , "world" )); |
987 | /// assert_eq!(s, format!("hello {}" , "world" )); |
988 | /// ``` |
989 | /// |
990 | /// # Lifetime limitation |
991 | /// |
992 | /// Except when no formatting arguments are used, |
993 | /// the produced `fmt::Arguments` value borrows temporary values, |
994 | /// which means it can only be used within the same expression |
995 | /// and cannot be stored for later use. |
996 | /// This is a known limitation, see [#92698](https://github.com/rust-lang/rust/issues/92698). |
997 | #[stable (feature = "rust1" , since = "1.0.0" )] |
998 | #[rustc_diagnostic_item = "format_args_macro" ] |
999 | #[allow_internal_unsafe ] |
1000 | #[allow_internal_unstable (fmt_internals)] |
1001 | #[rustc_builtin_macro ] |
1002 | #[macro_export ] |
1003 | macro_rules! format_args { |
1004 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1005 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1006 | } |
1007 | |
1008 | /// Same as [`format_args`], but can be used in some const contexts. |
1009 | /// |
1010 | /// This macro is used by the panic macros for the `const_panic` feature. |
1011 | /// |
1012 | /// This macro will be removed once `format_args` is allowed in const contexts. |
1013 | #[unstable (feature = "const_format_args" , issue = "none" )] |
1014 | #[allow_internal_unstable (fmt_internals, const_fmt_arguments_new)] |
1015 | #[rustc_builtin_macro ] |
1016 | #[macro_export ] |
1017 | macro_rules! const_format_args { |
1018 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1019 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1020 | } |
1021 | |
1022 | /// Same as [`format_args`], but adds a newline in the end. |
1023 | #[unstable ( |
1024 | feature = "format_args_nl" , |
1025 | issue = "none" , |
1026 | reason = "`format_args_nl` is only for internal \ |
1027 | language use and is subject to change" |
1028 | )] |
1029 | #[allow_internal_unstable (fmt_internals)] |
1030 | #[rustc_builtin_macro ] |
1031 | #[macro_export ] |
1032 | macro_rules! format_args_nl { |
1033 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1034 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1035 | } |
1036 | |
1037 | /// Inspects an environment variable at compile time. |
1038 | /// |
1039 | /// This macro will expand to the value of the named environment variable at |
1040 | /// compile time, yielding an expression of type `&'static str`. Use |
1041 | /// [`std::env::var`] instead if you want to read the value at runtime. |
1042 | /// |
1043 | /// [`std::env::var`]: ../std/env/fn.var.html |
1044 | /// |
1045 | /// If the environment variable is not defined, then a compilation error |
1046 | /// will be emitted. To not emit a compile error, use the [`option_env!`] |
1047 | /// macro instead. A compilation error will also be emitted if the |
1048 | /// environment variable is not a valid Unicode string. |
1049 | /// |
1050 | /// # Examples |
1051 | /// |
1052 | /// ``` |
1053 | /// let path: &'static str = env!("PATH" ); |
1054 | /// println!("the $PATH variable at the time of compiling was: {path}" ); |
1055 | /// ``` |
1056 | /// |
1057 | /// You can customize the error message by passing a string as the second |
1058 | /// parameter: |
1059 | /// |
1060 | /// ```compile_fail |
1061 | /// let doc: &'static str = env!("documentation" , "what's that?!" ); |
1062 | /// ``` |
1063 | /// |
1064 | /// If the `documentation` environment variable is not defined, you'll get |
1065 | /// the following error: |
1066 | /// |
1067 | /// ```text |
1068 | /// error: what's that?! |
1069 | /// ``` |
1070 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1071 | #[rustc_builtin_macro ] |
1072 | #[macro_export ] |
1073 | #[rustc_diagnostic_item = "env_macro" ] // useful for external lints |
1074 | macro_rules! env { |
1075 | ($name:expr $(,)?) => {{ /* compiler built-in */ }}; |
1076 | ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }}; |
1077 | } |
1078 | |
1079 | /// Optionally inspects an environment variable at compile time. |
1080 | /// |
1081 | /// If the named environment variable is present at compile time, this will |
1082 | /// expand into an expression of type `Option<&'static str>` whose value is |
1083 | /// `Some` of the value of the environment variable (a compilation error |
1084 | /// will be emitted if the environment variable is not a valid Unicode |
1085 | /// string). If the environment variable is not present, then this will |
1086 | /// expand to `None`. See [`Option<T>`][Option] for more information on this |
1087 | /// type. Use [`std::env::var`] instead if you want to read the value at |
1088 | /// runtime. |
1089 | /// |
1090 | /// [`std::env::var`]: ../std/env/fn.var.html |
1091 | /// |
1092 | /// A compile time error is only emitted when using this macro if the |
1093 | /// environment variable exists and is not a valid Unicode string. To also |
1094 | /// emit a compile error if the environment variable is not present, use the |
1095 | /// [`env!`] macro instead. |
1096 | /// |
1097 | /// # Examples |
1098 | /// |
1099 | /// ``` |
1100 | /// let key: Option<&'static str> = option_env!("SECRET_KEY" ); |
1101 | /// println!("the secret key might be: {key:?}" ); |
1102 | /// ``` |
1103 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1104 | #[rustc_builtin_macro ] |
1105 | #[macro_export ] |
1106 | #[rustc_diagnostic_item = "option_env_macro" ] // useful for external lints |
1107 | macro_rules! option_env { |
1108 | ($name:expr $(,)?) => {{ /* compiler built-in */ }}; |
1109 | } |
1110 | |
1111 | /// Concatenates identifiers into one identifier. |
1112 | /// |
1113 | /// This macro takes any number of comma-separated identifiers, and |
1114 | /// concatenates them all into one, yielding an expression which is a new |
1115 | /// identifier. Note that hygiene makes it such that this macro cannot |
1116 | /// capture local variables. Also, as a general rule, macros are only |
1117 | /// allowed in item, statement or expression position. That means while |
1118 | /// you may use this macro for referring to existing variables, functions or |
1119 | /// modules etc, you cannot define a new one with it. |
1120 | /// |
1121 | /// # Examples |
1122 | /// |
1123 | /// ``` |
1124 | /// #![feature(concat_idents)] |
1125 | /// |
1126 | /// # fn main() { |
1127 | /// fn foobar() -> u32 { 23 } |
1128 | /// |
1129 | /// let f = concat_idents!(foo, bar); |
1130 | /// println!("{}", f()); |
1131 | /// |
1132 | /// // fn concat_idents!(new, fun, name) { } // not usable in this way! |
1133 | /// # } |
1134 | /// ``` |
1135 | #[unstable ( |
1136 | feature = "concat_idents" , |
1137 | issue = "29599" , |
1138 | reason = "`concat_idents` is not stable enough for use and is subject to change" |
1139 | )] |
1140 | #[rustc_builtin_macro ] |
1141 | #[macro_export ] |
1142 | macro_rules! concat_idents { |
1143 | ($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }}; |
1144 | } |
1145 | |
1146 | /// Concatenates literals into a byte slice. |
1147 | /// |
1148 | /// This macro takes any number of comma-separated literals, and concatenates them all into |
1149 | /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals |
1150 | /// concatenated left-to-right. The literals passed can be any combination of: |
1151 | /// |
1152 | /// - byte literals (`b'r'`) |
1153 | /// - byte strings (`b"Rust"`) |
1154 | /// - arrays of bytes/numbers (`[b'A', 66, b'C']`) |
1155 | /// |
1156 | /// # Examples |
1157 | /// |
1158 | /// ``` |
1159 | /// #![feature(concat_bytes)] |
1160 | /// |
1161 | /// # fn main() { |
1162 | /// let s: &[u8; 6] = concat_bytes!(b'A' , b"BC" , [68, b'E' , 70]); |
1163 | /// assert_eq!(s, b"ABCDEF" ); |
1164 | /// # } |
1165 | /// ``` |
1166 | #[unstable (feature = "concat_bytes" , issue = "87555" )] |
1167 | #[rustc_builtin_macro ] |
1168 | #[macro_export ] |
1169 | macro_rules! concat_bytes { |
1170 | ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }}; |
1171 | } |
1172 | |
1173 | /// Concatenates literals into a static string slice. |
1174 | /// |
1175 | /// This macro takes any number of comma-separated literals, yielding an |
1176 | /// expression of type `&'static str` which represents all of the literals |
1177 | /// concatenated left-to-right. |
1178 | /// |
1179 | /// Integer and floating point literals are [stringified](core::stringify) in order to be |
1180 | /// concatenated. |
1181 | /// |
1182 | /// # Examples |
1183 | /// |
1184 | /// ``` |
1185 | /// let s = concat!("test" , 10, 'b' , true); |
1186 | /// assert_eq!(s, "test10btrue" ); |
1187 | /// ``` |
1188 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1189 | #[rustc_builtin_macro ] |
1190 | #[macro_export ] |
1191 | macro_rules! concat { |
1192 | ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }}; |
1193 | } |
1194 | |
1195 | /// Expands to the line number on which it was invoked. |
1196 | /// |
1197 | /// With [`column!`] and [`file!`], these macros provide debugging information for |
1198 | /// developers about the location within the source. |
1199 | /// |
1200 | /// The expanded expression has type `u32` and is 1-based, so the first line |
1201 | /// in each file evaluates to 1, the second to 2, etc. This is consistent |
1202 | /// with error messages by common compilers or popular editors. |
1203 | /// The returned line is *not necessarily* the line of the `line!` invocation itself, |
1204 | /// but rather the first macro invocation leading up to the invocation |
1205 | /// of the `line!` macro. |
1206 | /// |
1207 | /// # Examples |
1208 | /// |
1209 | /// ``` |
1210 | /// let current_line = line!(); |
1211 | /// println!("defined on line: {current_line}" ); |
1212 | /// ``` |
1213 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1214 | #[rustc_builtin_macro ] |
1215 | #[macro_export ] |
1216 | macro_rules! line { |
1217 | () => { |
1218 | /* compiler built-in */ |
1219 | }; |
1220 | } |
1221 | |
1222 | /// Expands to the column number at which it was invoked. |
1223 | /// |
1224 | /// With [`line!`] and [`file!`], these macros provide debugging information for |
1225 | /// developers about the location within the source. |
1226 | /// |
1227 | /// The expanded expression has type `u32` and is 1-based, so the first column |
1228 | /// in each line evaluates to 1, the second to 2, etc. This is consistent |
1229 | /// with error messages by common compilers or popular editors. |
1230 | /// The returned column is *not necessarily* the line of the `column!` invocation itself, |
1231 | /// but rather the first macro invocation leading up to the invocation |
1232 | /// of the `column!` macro. |
1233 | /// |
1234 | /// # Examples |
1235 | /// |
1236 | /// ``` |
1237 | /// let current_col = column!(); |
1238 | /// println!("defined on column: {current_col}" ); |
1239 | /// ``` |
1240 | /// |
1241 | /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two |
1242 | /// invocations return the same value, but the third does not. |
1243 | /// |
1244 | /// ``` |
1245 | /// let a = ("foobar" , column!()).1; |
1246 | /// let b = ("人之初性本善" , column!()).1; |
1247 | /// let c = ("f̅o̅o̅b̅a̅r̅" , column!()).1; // Uses combining overline (U+0305) |
1248 | /// |
1249 | /// assert_eq!(a, b); |
1250 | /// assert_ne!(b, c); |
1251 | /// ``` |
1252 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1253 | #[rustc_builtin_macro ] |
1254 | #[macro_export ] |
1255 | macro_rules! column { |
1256 | () => { |
1257 | /* compiler built-in */ |
1258 | }; |
1259 | } |
1260 | |
1261 | /// Expands to the file name in which it was invoked. |
1262 | /// |
1263 | /// With [`line!`] and [`column!`], these macros provide debugging information for |
1264 | /// developers about the location within the source. |
1265 | /// |
1266 | /// The expanded expression has type `&'static str`, and the returned file |
1267 | /// is not the invocation of the `file!` macro itself, but rather the |
1268 | /// first macro invocation leading up to the invocation of the `file!` |
1269 | /// macro. |
1270 | /// |
1271 | /// # Examples |
1272 | /// |
1273 | /// ``` |
1274 | /// let this_file = file!(); |
1275 | /// println!("defined in file: {this_file}" ); |
1276 | /// ``` |
1277 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1278 | #[rustc_builtin_macro ] |
1279 | #[macro_export ] |
1280 | macro_rules! file { |
1281 | () => { |
1282 | /* compiler built-in */ |
1283 | }; |
1284 | } |
1285 | |
1286 | /// Stringifies its arguments. |
1287 | /// |
1288 | /// This macro will yield an expression of type `&'static str` which is the |
1289 | /// stringification of all the tokens passed to the macro. No restrictions |
1290 | /// are placed on the syntax of the macro invocation itself. |
1291 | /// |
1292 | /// Note that the expanded results of the input tokens may change in the |
1293 | /// future. You should be careful if you rely on the output. |
1294 | /// |
1295 | /// # Examples |
1296 | /// |
1297 | /// ``` |
1298 | /// let one_plus_one = stringify!(1 + 1); |
1299 | /// assert_eq!(one_plus_one, "1 + 1" ); |
1300 | /// ``` |
1301 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1302 | #[rustc_builtin_macro ] |
1303 | #[macro_export ] |
1304 | macro_rules! stringify { |
1305 | ($($t:tt)*) => { |
1306 | /* compiler built-in */ |
1307 | }; |
1308 | } |
1309 | |
1310 | /// Includes a UTF-8 encoded file as a string. |
1311 | /// |
1312 | /// The file is located relative to the current file (similarly to how |
1313 | /// modules are found). The provided path is interpreted in a platform-specific |
1314 | /// way at compile time. So, for instance, an invocation with a Windows path |
1315 | /// containing backslashes `\` would not compile correctly on Unix. |
1316 | /// |
1317 | /// This macro will yield an expression of type `&'static str` which is the |
1318 | /// contents of the file. |
1319 | /// |
1320 | /// # Examples |
1321 | /// |
1322 | /// Assume there are two files in the same directory with the following |
1323 | /// contents: |
1324 | /// |
1325 | /// File 'spanish.in': |
1326 | /// |
1327 | /// ```text |
1328 | /// adiós |
1329 | /// ``` |
1330 | /// |
1331 | /// File 'main.rs': |
1332 | /// |
1333 | /// ```ignore (cannot-doctest-external-file-dependency) |
1334 | /// fn main() { |
1335 | /// let my_str = include_str!("spanish.in" ); |
1336 | /// assert_eq!(my_str, "adiós \n" ); |
1337 | /// print!("{my_str}" ); |
1338 | /// } |
1339 | /// ``` |
1340 | /// |
1341 | /// Compiling 'main.rs' and running the resulting binary will print "adiós". |
1342 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1343 | #[rustc_builtin_macro ] |
1344 | #[macro_export ] |
1345 | #[rustc_diagnostic_item = "include_str_macro" ] |
1346 | macro_rules! include_str { |
1347 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1348 | } |
1349 | |
1350 | /// Includes a file as a reference to a byte array. |
1351 | /// |
1352 | /// The file is located relative to the current file (similarly to how |
1353 | /// modules are found). The provided path is interpreted in a platform-specific |
1354 | /// way at compile time. So, for instance, an invocation with a Windows path |
1355 | /// containing backslashes `\` would not compile correctly on Unix. |
1356 | /// |
1357 | /// This macro will yield an expression of type `&'static [u8; N]` which is |
1358 | /// the contents of the file. |
1359 | /// |
1360 | /// # Examples |
1361 | /// |
1362 | /// Assume there are two files in the same directory with the following |
1363 | /// contents: |
1364 | /// |
1365 | /// File 'spanish.in': |
1366 | /// |
1367 | /// ```text |
1368 | /// adiós |
1369 | /// ``` |
1370 | /// |
1371 | /// File 'main.rs': |
1372 | /// |
1373 | /// ```ignore (cannot-doctest-external-file-dependency) |
1374 | /// fn main() { |
1375 | /// let bytes = include_bytes!("spanish.in" ); |
1376 | /// assert_eq!(bytes, b"adi \xc3\xb3s \n" ); |
1377 | /// print!("{}" , String::from_utf8_lossy(bytes)); |
1378 | /// } |
1379 | /// ``` |
1380 | /// |
1381 | /// Compiling 'main.rs' and running the resulting binary will print "adiós". |
1382 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1383 | #[rustc_builtin_macro ] |
1384 | #[macro_export ] |
1385 | #[rustc_diagnostic_item = "include_bytes_macro" ] |
1386 | macro_rules! include_bytes { |
1387 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1388 | } |
1389 | |
1390 | /// Expands to a string that represents the current module path. |
1391 | /// |
1392 | /// The current module path can be thought of as the hierarchy of modules |
1393 | /// leading back up to the crate root. The first component of the path |
1394 | /// returned is the name of the crate currently being compiled. |
1395 | /// |
1396 | /// # Examples |
1397 | /// |
1398 | /// ``` |
1399 | /// mod test { |
1400 | /// pub fn foo() { |
1401 | /// assert!(module_path!().ends_with("test" )); |
1402 | /// } |
1403 | /// } |
1404 | /// |
1405 | /// test::foo(); |
1406 | /// ``` |
1407 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1408 | #[rustc_builtin_macro ] |
1409 | #[macro_export ] |
1410 | macro_rules! module_path { |
1411 | () => { |
1412 | /* compiler built-in */ |
1413 | }; |
1414 | } |
1415 | |
1416 | /// Evaluates boolean combinations of configuration flags at compile-time. |
1417 | /// |
1418 | /// In addition to the `#[cfg]` attribute, this macro is provided to allow |
1419 | /// boolean expression evaluation of configuration flags. This frequently |
1420 | /// leads to less duplicated code. |
1421 | /// |
1422 | /// The syntax given to this macro is the same syntax as the [`cfg`] |
1423 | /// attribute. |
1424 | /// |
1425 | /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For |
1426 | /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for |
1427 | /// the condition, regardless of what `cfg!` is evaluating. |
1428 | /// |
1429 | /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute |
1430 | /// |
1431 | /// # Examples |
1432 | /// |
1433 | /// ``` |
1434 | /// let my_directory = if cfg!(windows) { |
1435 | /// "windows-specific-directory" |
1436 | /// } else { |
1437 | /// "unix-directory" |
1438 | /// }; |
1439 | /// ``` |
1440 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1441 | #[rustc_builtin_macro ] |
1442 | #[macro_export ] |
1443 | macro_rules! cfg { |
1444 | ($($cfg:tt)*) => { |
1445 | /* compiler built-in */ |
1446 | }; |
1447 | } |
1448 | |
1449 | /// Parses a file as an expression or an item according to the context. |
1450 | /// |
1451 | /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you |
1452 | /// are looking for. Usually, multi-file Rust projects use |
1453 | /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and |
1454 | /// modules are explained in the Rust-by-Example book |
1455 | /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is |
1456 | /// explained in the Rust Book |
1457 | /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html). |
1458 | /// |
1459 | /// The included file is placed in the surrounding code |
1460 | /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If |
1461 | /// the included file is parsed as an expression and variables or functions share names across |
1462 | /// both files, it could result in variables or functions being different from what the |
1463 | /// included file expected. |
1464 | /// |
1465 | /// The included file is located relative to the current file (similarly to how modules are |
1466 | /// found). The provided path is interpreted in a platform-specific way at compile time. So, |
1467 | /// for instance, an invocation with a Windows path containing backslashes `\` would not |
1468 | /// compile correctly on Unix. |
1469 | /// |
1470 | /// # Uses |
1471 | /// |
1472 | /// The `include!` macro is primarily used for two purposes. It is used to include |
1473 | /// documentation that is written in a separate file and it is used to include [build artifacts |
1474 | /// usually as a result from the `build.rs` |
1475 | /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script). |
1476 | /// |
1477 | /// When using the `include` macro to include stretches of documentation, remember that the |
1478 | /// included file still needs to be a valid Rust syntax. It is also possible to |
1479 | /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or |
1480 | /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain |
1481 | /// text or markdown file. |
1482 | /// |
1483 | /// # Examples |
1484 | /// |
1485 | /// Assume there are two files in the same directory with the following contents: |
1486 | /// |
1487 | /// File 'monkeys.in': |
1488 | /// |
1489 | /// ```ignore (only-for-syntax-highlight) |
1490 | /// ['🙈' , '🙊' , '🙉' ] |
1491 | /// .iter() |
1492 | /// .cycle() |
1493 | /// .take(6) |
1494 | /// .collect::<String>() |
1495 | /// ``` |
1496 | /// |
1497 | /// File 'main.rs': |
1498 | /// |
1499 | /// ```ignore (cannot-doctest-external-file-dependency) |
1500 | /// fn main() { |
1501 | /// let my_string = include!("monkeys.in" ); |
1502 | /// assert_eq!("🙈🙊🙉🙈🙊🙉" , my_string); |
1503 | /// println!("{my_string}" ); |
1504 | /// } |
1505 | /// ``` |
1506 | /// |
1507 | /// Compiling 'main.rs' and running the resulting binary will print |
1508 | /// "🙈🙊🙉🙈🙊🙉". |
1509 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1510 | #[rustc_builtin_macro ] |
1511 | #[macro_export ] |
1512 | #[rustc_diagnostic_item = "include_macro" ] // useful for external lints |
1513 | macro_rules! include { |
1514 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1515 | } |
1516 | |
1517 | /// Automatic Differentiation macro which allows generating a new function to compute |
1518 | /// the derivative of a given function. It may only be applied to a function. |
1519 | /// The expected usage syntax is |
1520 | /// `#[autodiff(NAME, MODE, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]` |
1521 | /// where: |
1522 | /// NAME is a string that represents a valid function name. |
1523 | /// MODE is any of Forward, Reverse, ForwardFirst, ReverseFirst. |
1524 | /// INPUT_ACTIVITIES consists of one valid activity for each input parameter. |
1525 | /// OUTPUT_ACTIVITY must not be set if we implicitly return nothing (or explicitly return |
1526 | /// `-> ()`). Otherwise it must be set to one of the allowed activities. |
1527 | #[unstable (feature = "autodiff" , issue = "124509" )] |
1528 | #[allow_internal_unstable (rustc_attrs)] |
1529 | #[rustc_builtin_macro ] |
1530 | pub macro autodiff($item:item) { |
1531 | /* compiler built-in */ |
1532 | } |
1533 | |
1534 | /// Asserts that a boolean expression is `true` at runtime. |
1535 | /// |
1536 | /// This will invoke the [`panic!`] macro if the provided expression cannot be |
1537 | /// evaluated to `true` at runtime. |
1538 | /// |
1539 | /// # Uses |
1540 | /// |
1541 | /// Assertions are always checked in both debug and release builds, and cannot |
1542 | /// be disabled. See [`debug_assert!`] for assertions that are not enabled in |
1543 | /// release builds by default. |
1544 | /// |
1545 | /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if |
1546 | /// violated could lead to unsafety. |
1547 | /// |
1548 | /// Other use-cases of `assert!` include testing and enforcing run-time |
1549 | /// invariants in safe code (whose violation cannot result in unsafety). |
1550 | /// |
1551 | /// # Custom Messages |
1552 | /// |
1553 | /// This macro has a second form, where a custom panic message can |
1554 | /// be provided with or without arguments for formatting. See [`std::fmt`] |
1555 | /// for syntax for this form. Expressions used as format arguments will only |
1556 | /// be evaluated if the assertion fails. |
1557 | /// |
1558 | /// [`std::fmt`]: ../std/fmt/index.html |
1559 | /// |
1560 | /// # Examples |
1561 | /// |
1562 | /// ``` |
1563 | /// // the panic message for these assertions is the stringified value of the |
1564 | /// // expression given. |
1565 | /// assert!(true); |
1566 | /// |
1567 | /// fn some_computation() -> bool { true } // a very simple function |
1568 | /// |
1569 | /// assert!(some_computation()); |
1570 | /// |
1571 | /// // assert with a custom message |
1572 | /// let x = true; |
1573 | /// assert!(x, "x wasn't true!" ); |
1574 | /// |
1575 | /// let a = 3; let b = 27; |
1576 | /// assert!(a + b == 30, "a = {}, b = {}" , a, b); |
1577 | /// ``` |
1578 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1579 | #[rustc_builtin_macro ] |
1580 | #[macro_export ] |
1581 | #[rustc_diagnostic_item = "assert_macro" ] |
1582 | #[allow_internal_unstable ( |
1583 | core_intrinsics, |
1584 | panic_internals, |
1585 | edition_panic, |
1586 | generic_assert_internals |
1587 | )] |
1588 | macro_rules! assert { |
1589 | ($cond:expr $(,)?) => {{ /* compiler built-in */ }}; |
1590 | ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }}; |
1591 | } |
1592 | |
1593 | /// Prints passed tokens into the standard output. |
1594 | #[unstable ( |
1595 | feature = "log_syntax" , |
1596 | issue = "29598" , |
1597 | reason = "`log_syntax!` is not stable enough for use and is subject to change" |
1598 | )] |
1599 | #[rustc_builtin_macro ] |
1600 | #[macro_export ] |
1601 | macro_rules! log_syntax { |
1602 | ($($arg:tt)*) => { |
1603 | /* compiler built-in */ |
1604 | }; |
1605 | } |
1606 | |
1607 | /// Enables or disables tracing functionality used for debugging other macros. |
1608 | #[unstable ( |
1609 | feature = "trace_macros" , |
1610 | issue = "29598" , |
1611 | reason = "`trace_macros` is not stable enough for use and is subject to change" |
1612 | )] |
1613 | #[rustc_builtin_macro ] |
1614 | #[macro_export ] |
1615 | macro_rules! trace_macros { |
1616 | (true) => {{ /* compiler built-in */ }}; |
1617 | (false) => {{ /* compiler built-in */ }}; |
1618 | } |
1619 | |
1620 | /// Attribute macro used to apply derive macros. |
1621 | /// |
1622 | /// See [the reference] for more info. |
1623 | /// |
1624 | /// [the reference]: ../../../reference/attributes/derive.html |
1625 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1626 | #[rustc_builtin_macro ] |
1627 | pub macro derive ($item:item) { |
1628 | /* compiler built-in */ |
1629 | } |
1630 | |
1631 | /// Attribute macro used to apply derive macros for implementing traits |
1632 | /// in a const context. |
1633 | /// |
1634 | /// See [the reference] for more info. |
1635 | /// |
1636 | /// [the reference]: ../../../reference/attributes/derive.html |
1637 | #[unstable (feature = "derive_const" , issue = "none" )] |
1638 | #[rustc_builtin_macro ] |
1639 | pub macro derive_const ($item:item) { |
1640 | /* compiler built-in */ |
1641 | } |
1642 | |
1643 | /// Attribute macro applied to a function to turn it into a unit test. |
1644 | /// |
1645 | /// See [the reference] for more info. |
1646 | /// |
1647 | /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute |
1648 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1649 | #[allow_internal_unstable (test, rustc_attrs, coverage_attribute)] |
1650 | #[rustc_builtin_macro ] |
1651 | pub macro test ($item:item) { |
1652 | /* compiler built-in */ |
1653 | } |
1654 | |
1655 | /// Attribute macro applied to a function to turn it into a benchmark test. |
1656 | #[unstable ( |
1657 | feature = "test" , |
1658 | issue = "50297" , |
1659 | soft, |
1660 | reason = "`bench` is a part of custom test frameworks which are unstable" |
1661 | )] |
1662 | #[allow_internal_unstable (test, rustc_attrs, coverage_attribute)] |
1663 | #[rustc_builtin_macro ] |
1664 | pub macro bench ($item:item) { |
1665 | /* compiler built-in */ |
1666 | } |
1667 | |
1668 | /// An implementation detail of the `#[test]` and `#[bench]` macros. |
1669 | #[unstable ( |
1670 | feature = "custom_test_frameworks" , |
1671 | issue = "50297" , |
1672 | reason = "custom test frameworks are an unstable feature" |
1673 | )] |
1674 | #[allow_internal_unstable (test, rustc_attrs)] |
1675 | #[rustc_builtin_macro ] |
1676 | pub macro test_case ($item:item) { |
1677 | /* compiler built-in */ |
1678 | } |
1679 | |
1680 | /// Attribute macro applied to a static to register it as a global allocator. |
1681 | /// |
1682 | /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html). |
1683 | #[stable (feature = "global_allocator" , since = "1.28.0" )] |
1684 | #[allow_internal_unstable (rustc_attrs)] |
1685 | #[rustc_builtin_macro ] |
1686 | pub macro global_allocator ($item:item) { |
1687 | /* compiler built-in */ |
1688 | } |
1689 | |
1690 | /// Attribute macro applied to a function to give it a post-condition. |
1691 | /// |
1692 | /// The attribute carries an argument token-tree which is |
1693 | /// eventually parsed as a unary closure expression that is |
1694 | /// invoked on a reference to the return value. |
1695 | #[unstable (feature = "contracts" , issue = "128044" )] |
1696 | #[allow_internal_unstable (contracts_internals)] |
1697 | #[rustc_builtin_macro ] |
1698 | pub macro contracts_ensures($item:item) { |
1699 | /* compiler built-in */ |
1700 | } |
1701 | |
1702 | /// Attribute macro applied to a function to give it a precondition. |
1703 | /// |
1704 | /// The attribute carries an argument token-tree which is |
1705 | /// eventually parsed as an boolean expression with access to the |
1706 | /// function's formal parameters |
1707 | #[unstable (feature = "contracts" , issue = "128044" )] |
1708 | #[allow_internal_unstable (contracts_internals)] |
1709 | #[rustc_builtin_macro ] |
1710 | pub macro contracts_requires($item:item) { |
1711 | /* compiler built-in */ |
1712 | } |
1713 | |
1714 | /// Attribute macro applied to a function to register it as a handler for allocation failure. |
1715 | /// |
1716 | /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html). |
1717 | #[unstable (feature = "alloc_error_handler" , issue = "51540" )] |
1718 | #[allow_internal_unstable (rustc_attrs)] |
1719 | #[rustc_builtin_macro ] |
1720 | pub macro alloc_error_handler($item:item) { |
1721 | /* compiler built-in */ |
1722 | } |
1723 | |
1724 | /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise. |
1725 | #[unstable ( |
1726 | feature = "cfg_accessible" , |
1727 | issue = "64797" , |
1728 | reason = "`cfg_accessible` is not fully implemented" |
1729 | )] |
1730 | #[rustc_builtin_macro ] |
1731 | pub macro cfg_accessible ($item:item) { |
1732 | /* compiler built-in */ |
1733 | } |
1734 | |
1735 | /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to. |
1736 | #[unstable ( |
1737 | feature = "cfg_eval" , |
1738 | issue = "82679" , |
1739 | reason = "`cfg_eval` is a recently implemented feature" |
1740 | )] |
1741 | #[rustc_builtin_macro ] |
1742 | pub macro cfg_eval ($($tt:tt)*) { |
1743 | /* compiler built-in */ |
1744 | } |
1745 | |
1746 | /// Provide a list of type aliases and other opaque-type-containing type definitions. |
1747 | /// This list will be used in the body of the item it is applied to define opaque |
1748 | /// types' hidden types. |
1749 | /// Can only be applied to things that have bodies. |
1750 | #[unstable ( |
1751 | feature = "type_alias_impl_trait" , |
1752 | issue = "63063" , |
1753 | reason = "`type_alias_impl_trait` has open design concerns" |
1754 | )] |
1755 | #[rustc_builtin_macro ] |
1756 | #[cfg (not(bootstrap))] |
1757 | pub macro define_opaque($($tt:tt)*) { |
1758 | /* compiler built-in */ |
1759 | } |
1760 | |
1761 | /// Unstable placeholder for type ascription. |
1762 | #[allow_internal_unstable (builtin_syntax)] |
1763 | #[unstable ( |
1764 | feature = "type_ascription" , |
1765 | issue = "23416" , |
1766 | reason = "placeholder syntax for type ascription" |
1767 | )] |
1768 | #[rustfmt::skip] |
1769 | pub macro type_ascribe($expr:expr, $ty:ty) { |
1770 | builtin # type_ascribe($expr, $ty) |
1771 | } |
1772 | |
1773 | /// Unstable placeholder for deref patterns. |
1774 | #[allow_internal_unstable (builtin_syntax)] |
1775 | #[unstable ( |
1776 | feature = "deref_patterns" , |
1777 | issue = "87121" , |
1778 | reason = "placeholder syntax for deref patterns" |
1779 | )] |
1780 | pub macro deref($pat:pat) { |
1781 | builtin # deref($pat) |
1782 | } |
1783 | } |
1784 | |